Effect of Co Doping on the Superconducting Properties of Overdoped (Lu0.8Ca0.2)Ba2Cu3Oz

Article Preview

Abstract:

The effect of Co-doping and thermal treatments on the superconducting properties of the heavily overdoped (Lu0.8Ca0.2)Ba2Cu3Oz has been investigated by X-ray diffraction, resistivity and thermoelectric power measurements. A comparative analysis of the resistivity and thermoelectric power of the (Lu0.8Ca0.2)Ba2(Cu3-xCox)Oz and the heat-treated Co-free (Lu0.8Ca0.2)Ba2Cu3Oz reveals that, in the overdoped region, the hole carriers reduced by the Co doping and by the oxygen depletion play a very similar role in the superconducting properties. As a result, a nearly common inverted parabolic correlation is observed between Tc and the planar carrier concentration determined from the room-temperature thermoelectric power measurements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-112

Citation:

Online since:

October 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. -H. Whangbo and C.C. Torardi: Science Vol. 249 (1990), p.1143.

Google Scholar

[2] M.R. Presland , J.L. Tallon, R.G. Buckley, R.S. Liu and. N.E. Flower: Physica C Vol. 176 (1991), p.95.

Google Scholar

[3] S.H. Naqib, J.R. Cooper, J.L. Tallon and C. Panagopoulos: Physica C Vol. 387 (2003), p.365.

Google Scholar

[4] J.D. Jorgensen, B.W. Veal, A.P. Paulikas, L.J. Nowicki, G.W. Crabtree, H. Claus and W.K. Kock: Phys. Rev. B Vol. 41 (1990), p.1863.

Google Scholar

[5] J. M. Tarascon, P. Barboux, P.F. Miceli, L.H. Greene, G.W. Hull, M. Eibschutz and S.A. Sunshine: Phys. Rev. B Vol. 37 (1988), p.7458.

Google Scholar

[6] T. Kistenmacher: Phys. Rev. B Vol. 38 (1988), p.8862.

Google Scholar

[7] H. Shimizu, T. Kiyama and J. Arai: Physica C Vol. 196 (1992), p.329.

Google Scholar

[8] J.L. Tallon and N.E. Flower: Physica C Vol. 204 (1993), p.237.

Google Scholar

[9] J.L. Tallon, C. Bernhard, H. Shaked, R.L. Hitterman and J.D. Jorgenson, Phys. Rev. B Vol. 51 (1995), p.12911.

Google Scholar

[10] P.E. Miceli, J.M. Tarascon, L.H. Greene and P. Barboux: Phys. Rev. B Vol. 37(1988), p.5932.

Google Scholar

[11] J. Clayhold, S. Hagen, Z.Z. Wang, N.P. Ong, J.M. Tarascon and P. Barboux: Phys. Rev. B Vol. 39 (1988), p.777.

Google Scholar

[12] T. Wada, Y. Yaegashi, A. Ichinose, H. Yamauchi and S. Tanaka: Phys. Rev. B Vol. 44 (1991), p.2341.

Google Scholar

[13] J. L. Tallon and G. V. M. Williams: Phys. Rev. B Vol. 61 (2000), p.9820.

Google Scholar

[14] V.P.S. Awana and A.V. Narlikar: Phys. Rev. B Vol. 49 (1994), p.6353.

Google Scholar

[15] A. Sedky, A. Gupta, V.P.S. Awana and A.V. Narlikar: Phys. Rev. B Vol. 58 (1998), p.12495.

Google Scholar

[16] H.K. Lee and Y.H. Kim: J. Korean Phys. Soc: Vol. 48 (2006), P. 1151.

Google Scholar

[17] E. Suard, A. Maignan, V. Caignaert and B. Raveau : Physica C Vol. 200 (1992), p.43.

Google Scholar

[18] S.D. Obertelli, J.R. Cooper and J.L. Tallon: Phys. Rev. B Vol. 46 (1992), p.14928.

Google Scholar

[19] J.T. Kucera and J.C. Bravman: Phys. Rev. B Vol. 51(1995), p.8582.

Google Scholar