In Situ Characterization of Degradation Behavior of Plasma-Sprayed Coatings on Orthopedic and Dental Implants

Article Preview

Abstract:

Plasma-sprayed ‘HA’ coatings on commercial orthopedic and dental implants were developed to combine the strength of the metal (Ti or Ti alloy) and the bioactivity of the hydroxyapatite (HA). Several studies have shown that ‘HA’-coated implants provided greater amount of bone attachment, higher bone-implant interfacial strength and accelerated skeletal attachment. However, some reports on implant failures have been attributed to coating delamination and coating early resorption of the plasma sprayed ‘HA’ coating. This paper reviews studies on characterization and degradation of plasma-sprayed ‘HA’ coatings on orthopedic and dental implants and offers alternatives to plasma-spray method of providing calcium phosphate coating. X-ray diffraction analyses showed that plasma-sprayed HA coating consists principally of HA and amorphous calcium phosphate (ACP) with minor amounts of other resorbable calcium phosphates (α- or β-tricalcium phosphates, tetracalcium phosphate), sometimes calcium oxide. The HA/ACP ratios were found to range from 20HA/80ACP to 70HA/30ACP in coated implants from different manufacturers. In vitro initial dissolution rates in acidic buffer (pH 6, 37oC) increased with decreasing HA/ACP ratios in the coating because of the preferential dissolution of the ACP phase. These results suggest that coating with very low HA/ACP ratio may result in the premature resorption of the coating before the bone can attach to the implant thus causing loosening and eventual failure of the implant. Alternatives to plasma-sprayed ‘HA’ are implant surface modifications and low temperature calcium phosphate coatings using electrochemical deposition method or precipitation method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

203-211

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.M. Brunette, P. Tengvall, P, Thompson. Titanium in Medicine (Springer Verlag: New York, 2001).

Google Scholar

[2] M. Jarcho. Clin Orhopaed 157 (1981), 259-278.

Google Scholar

[3] K. deGroot. Bioceramics of Calcium Phosphates (CRC Press: Boca Raton, 1983).

Google Scholar

[4] R.Z. LeGeros (1988).

Google Scholar

[5] R.Z. LeGeros: Clin Orthopaed Rel Res 395 (2002), 81-98.

Google Scholar

[6] G. Daculsi , N. Passuti. Biomatrials 11 (1990), 86-96. 13 14 A B C.

Google Scholar

[7] L.L. Hench, J. Wilson. Biomater Science 226 (1984), 630-636.

Google Scholar

[8] K. deGroot. In: P. Vincenzini (ed). High Tech Ceramics. (Elsevier Science Publishers: Amsterdam, 1987), 381-386.

Google Scholar

[9] P. Serekian: In R.G.T. Geesink, M.T. Manley (eds). Hydroxyapatite coatings in orthopedic surgery. (New York Raven Press, 1993).

Google Scholar

[10] P. Ducheyne , K.E. Healy. J Biomed Mat Res 22 (1988). 1137-1163.

Google Scholar

[11] S.D. Cook, K.A. Thomas, J.E. Dalton, R.K. Volkman, T.S. Whiwtecloud, J.E. Kay. J Biomed Mat Res 26 (1992), 989-1001.

Google Scholar

[12] R.G.T. Geesink. Clin Orthoped Res 261 (1990), 39-58.

Google Scholar

[13] J.A. Jansen, J.P.C.M. van de Waerden, J.G.C. Wolke, K. deGroot. J biomed Mater Res 25 (1991), 973-989.

Google Scholar

[14] G. Daculsi, R.Z. LeGeros, C. Deudon. Scan Micros 4 (1990), 309-314.

Google Scholar

[15] T.W. Bauer, R.C. T Geesink, R. Zimmerman, J.T. McMahon. J Bont Jt Surg 73A(1991), 1439-1452.

Google Scholar

[16] R.D. Bloebaum, J.A. Dupont. J Arthop 8 (1993), 97-102.

Google Scholar

[17] W.J.A. Dhert, C.P.A. Klein, J.G.C. Wolke, E.A. van der Velde, K. de Groot. J Biomed Mater Res 25 (1991), 1183-1200.

Google Scholar

[18] K.R. St. John (ed). Particulate Debris from Medical Imlants. (ASATM STP 1144, 1992).

Google Scholar

[19] R.Z. LeGeros, Y.E. Kim, R. Kijkowska, V. Zurita, C. Bleiwas, P-Y Huang, B Edwards, F Dimaano, J.P. LeGeros. Bioceramics 11 (World Scientific Publishing: Singapore, 1998), 181-184.

Google Scholar

[20] R.Z. LeGeros. Calcium Phosphates in Oral Biology and Medicine. Monographs in Oral Sciences Vol 15 (Karger: Basel, 1991).

Google Scholar

[21] J.P. LeGeros, R.Z. LeGeros, B. Edwards, J. Zitelli, A. Burgess. In: E. Horowitz, J.E. Parr (eds). Characterization and Performance of Calcium Phosphate Coatings for Implants. ASTM STP 1196 (ASTM, Philadelphia, 1994), 33-42.

DOI: 10.1520/stp25181s

Google Scholar

[22] M. Spector, J.G. Hanlon, G.H. Nancollas. In: P. Brown, B. Constanz (eds). Hydroxyapatite and Related Compounds. (CRC Press: Boca Raton, 1994), 117-126.

Google Scholar

[23] Z. Zyman, J., Weng, X. Liu, X. Zhang, Z. Ma. Biomat 14 (1993), 225-228.

Google Scholar

[24] R.Z. LeGeros, J.P. LeGeros, Y. Kim, R. Kijkowska, R. Zheng, C. Bautista, J.L. Wong. Ceram Trans 48 (1995), 173-189.

Google Scholar

[25] ASTM procedure F1926.

Google Scholar

[26] R.Z. LeGeros, R. Kijkowska, J.P. LeGeros, R. Zheng, D. Fan. Proc Soc Biomat (1993), 221.

Google Scholar

[27] T.M. Gregory, E.C. Moreno, J.M. Patel, W. E. Brown. J Res Natl Bur Stand 78A (1984), 667-674.

Google Scholar

[28] R.Z. LeGeros: Clin Mat 14 (1993), 65-88.

Google Scholar

[29] R. Baron, L. Neff, D. Louvard, P. Courtoy. J Cell Biol 101 (1985), 2210-2222.

Google Scholar

[30] C.A. Beckham, T.K. Greenlee Jr., A.R. Crebo. Calc Tiss Res 8 (1971), 165-171.

Google Scholar

[31] M. Heughebaert M, R.Z. LeGeros, M. Gineste, A. Guilhem, G. Bonel. J Biomed Mater Res 22 (1988), 254-268.

DOI: 10.1002/jbm.820221406

Google Scholar

[32] R. Z. LeGeros, G. Daculsi In: T Yamamuro, L. Hench, J. Wilson (eds). Handbook of Bioactive Ceramics Vol. II. (CRC Press, Florida, 19990), 17-28.

Google Scholar

[33] T. Kokubo. Thermochim Acta 280 (1996), 479-490.

Google Scholar

[34] L. Hench. J Am Ceramics Soc 74 (1994)1287-1510.

Google Scholar

[35] R.Z. LeGeros, G. Daculsi, I. Orly, M. Gregoire. In: J.E.D. Davies (ed). The BoneBiomaterial Interface [University of Tronto Press, Toronto, 1991), 76-88.

Google Scholar

[36] Y. Kuboki, H. Takita, D. Kobayashi, E. Tsuruga, M. Inoue, M. Murata, N. Nagai, Y. Dohi, H. Ohgushi. J Biomed Mater Res 39 (1998), 190-198.

DOI: 10.1002/(sici)1097-4636(199802)39:2<190::aid-jbm4>3.0.co;2-k

Google Scholar

[37] K. Ishikawa, Y. Miyamoto, M. Nagayama, K. Asaoka. Blast coating method: New method of coating titanium surface with hydroxyapatite at room temperature. J Biomed Mater Res (Appl Biomater) 38 (1997), 129-134.

DOI: 10.1002/(sici)1097-4636(199722)38:2<129::aid-jbm7>3.0.co;2-s

Google Scholar

[38] T. Salgado, J.P. LeGeros, J Wang: Bioceramics 11(World Scientific Publishing Co., Pte. Ltd, 1998).

Google Scholar

[39] J.P. LeGeros, G. Daculsi, R.Z. LeGeros. Proc. Annual Meeting of Society for Biomaterials (1996).

Google Scholar

[40] T. Mano, Y. Ueyama, K Ishikawa, T. Matsumura, K. Suzuki. Biomaterials 23 (2002)1831-(1936).

Google Scholar

[41] M. Shirkhanizadeh. J Mater Sci. Mater Med 5 (1994), 91-93.

Google Scholar

[42] J. Redepening, T. Schlessinger , S. Burnham, L. Lippiello, J. Miyano. J Biomed Mater Res 30 (1996), 287-294.

Google Scholar

[43] S. Lin, R.Z. LeGeros, J.P. LeGeros. J Biomed Mater Res 66A (2003), 819-828.

DOI: 10.1002/jbm.a.10072

Google Scholar

[44] J.P. LeGeros, S. Lin, D. Mijares, F. Dimaano, R.Z. LeGeros: Key Engineer Mater 284-286 (2005), 247-250.

DOI: 10.4028/www.scientific.net/kem.284-286.247

Google Scholar

[45] Patent WO 2004/098436.

Google Scholar

[46] K. deGroot Bioceramic 11 (World Scientific Publishing: Singapore, 1998), 41-43.

Google Scholar

[47] R. Rohanizadeh, R.Z. LeGeros, M. Harsono , A. Benavid. J Biomed Mater Res 72A (2005), 428-438.

DOI: 10.1002/jbm.a.30258

Google Scholar

[48] Provisional patent application filed September 24, (2004).

Google Scholar

[49] M. Wei, H.M. Kim, T. Kokubo, J.H. Evans. Mat sci Eng C-Bio S 20 (2002), 125- 134.

Google Scholar