Static Fatigue of a 2.5D SiC/[Si-B-C] Composite at Intermediate Temperature under Air

Article Preview

Abstract:

Non-oxide ceramic-matrix composites (CMCs) are subjected to be used in aeronautic applications which require very long duration (up to 100 000h) of materials at high temperatures and under air. Recently a self-healing [Si-B-C] matrix has been developped to enhance strongly the lifetime of CMCs under air. The aim of this work is to study the mechanical behaviour of a SiCf/[Si-B-C] composite with a self-healing matrix under static fatigue, and to determine its lifetime. During the mechanical tests, acoustic emission is detected in order to characterize the damage of the composite in addition to the measurement of the longitudinal deformation of the composite. The analysis of acoustic emission follows a non-supervised procedure of classification. Each event of acoustic emission is described by a set of several parameters, and the total activity can be divided in four classes. The assignment of each class to a damage mechanism is required to follow the spread of damage during fatigue and to determine the mechanisms controlling the failure of the composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-146

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Forio and J. Lamon: Ceram Transactions, Westerville, Ed. N.P. Bansal, J.P. Singh, H.T. Lin. American Ceramic Society Vol. 128 (2001), p.127.

Google Scholar

[2] G. Farizy, J-L. Chermant, J. Vicens and J-C. Sangleboeuf: Advanced Engineering Materials Vol. 7-6 (2005), p.529.

Google Scholar

[3] N. Carrère and J. Lamon: J. Europ. Ceram. Soc Vol. 23 (2003), p.1105.

Google Scholar

[4] P. Reynaud, D. Rouby and G. Fantozzi: Annales de Chimie Sciences des Matériaux Vol. 30 (2005), p.649.

DOI: 10.3166/acsm.30.649-658

Google Scholar

[5] A.G. Beattie: J. Acoust. Emission Vol. 2 (1983), p.95.

Google Scholar

[6] G.N. Morscher: Comp. Sci. Technol. Vol. 64 (2004), p.1311.

Google Scholar

[7] G.N. Morscher: Comp. Sci. Technol. Vol. 62 (2002), p.1171.

Google Scholar

[8] G.N. Morscher: Comp. Sci. Technol. Vol. 59 (1999), p.687.

Google Scholar

[9] S. Huguet, N. Godin, R. Gaertner, L. Salmon and D. Villard: Comp. Sci. Technol. Vol. 62 (2002), p.1433.

Google Scholar

[10] N. Godin, S. Huguet and R. Gaertner: NDT & E International Vol. 38 (2005), p.299.

Google Scholar

[11] A.A. Anastassopoulos and T.P. Philippidis: J. Acoust. Emission Vol. 13 (1995), p.11.

Google Scholar

[12] V. Kostopoulos, T.H. Loutas, A. Kontsos, G. Sotiriadis and Y.Z. Pappas: NDT&E International Vol. 36 (2003), p.571.

DOI: 10.1016/s0963-8695(03)00068-9

Google Scholar

[13] Y.Z. Pappas, A. Kontsos, T.H. Loutas and V. Kostopoulos: NDT&E International Vol. 37 (2004), p.389.

Google Scholar

[14] M.R. Anderberg: Cluster analysis for application (Academic press 1973).

Google Scholar

[15] G. Saporta: Probabilités, analyse des données et statistique (éd. TECHNIP 1990).

Google Scholar

[16] A. Likas, N. Vlassis and J. Verbeek: Pattern Recognition Vol. 366 (2003), p.451.

Google Scholar

[17] A.L. Davies and D.W. Bouldin: IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI 1 (1979), p.224.

Google Scholar