Processing of Non-Oxide Ceramic Matrix Composites: An Overview

Article Preview

Abstract:

Ceramic matrix composites (CMCs) comprise a fiber reinforcement embedded in a ceramic matrix, the two main constituents being bonded through an interphase, which is a thin layer of a compliant material with a low shear stress, arresting and deflecting the matrix microcracks formed under load. Non-oxide CMCs, such as C/C ; C/SiC or SiC/SiC, are fabricated from a suitable precursor of the matrix, following a gaseous (CVI-process), a liquid (PIP and RMI processes) or a slurry (SI-HPS) routes. Each of these routes is briefly depicted focusing on fundamental aspects and its advantages and drawbacks discussed. Possible extensions of the processes to new composites are suggested. Finally, a comparison of these techniques, in terms of processability and composites properties is presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

64-74

Citation:

Online since:

October 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.K. Chawla, Ceramic Matrix Composites, Chapman et Hall, London, (1993).

Google Scholar

[2] R. Warren, Ceramic Matrix Composites, Blackie, Glasgow, (1992).

Google Scholar

[3] W.J. Lackey, T.L. Starr, in Fiber Reinforced Ceramic Composites, (K.S. Mazdiyasni, ed. ), Chap. 6, p.397, Noyes Publ., Park Ridge, NJ, USA, (1990).

Google Scholar

[4] R.A. Lowden, D.P. Stinton, T.M. Besmann, in Handbook on Continuous Fiber-Reinforced Ceramic Matrix Composites, (R.L. Lehman et al., eds. ), Chap 6, p.205, Japan Chapter of SAMPE, Yokohama, (1997).

Google Scholar

[5] F. Langlais, in Comprehensive Composite Materials, (A. Kelly, C. Zweben, ed. in chief), Vol. 4, p.611, Pergamon-Elsevier, Amsterdam, (2000).

Google Scholar

[6] T. Mah, Y.F. Yu, E.E. Hermes, K.S. Mazdiyasni, in Fiber Reinforced Ceramic Composites, (K.S. Mazdiyasni, ed. ), Chap. 10, p.278, Noyes Publ., Park Ridge, NJ, USA, (1990).

Google Scholar

[7] K. Sato, T. Suzuki, O. Funayama, I. Isoda, Ceram. Eng. Sci. Proc., 13 (1992) p.614.

Google Scholar

[8] M.N. Ghasemi Nejhad, M.V. Chandramouli, A. Yousefpour, J. Composite Mater., 35-24 (2001) p.2207.

Google Scholar

[9] R. Jones, A. Szweda, D. Petrak, Composites : Part A, 30 (1999) p.569.

Google Scholar

[10] G. Ziegler, I. Richter, D. Suttor, Composites : Part A, 30 (1999) p.411.

Google Scholar

[11] W.B. Hillig, in Fiber-Reinforced Ceramic Composites, (K.S. Mazdiyasni, ed. ), Chap. 9, p.260, Noyes Publ., Park Ridge, NJ, USA, (1990).

Google Scholar

[12] K.L. Luthra, R.N. Singh, M.K. Brun, Am. Ceram. Soc. Bull., 72.

Google Scholar

[7] (1993) p.79.

Google Scholar

[13] J. Fabig, W. Krenkel, in Advanced Structural Fiber Composites, (P. Vincenzini, ed. ) p.141, Techna, Faenza, Italy, (1999).

Google Scholar

[14] K. Nakano, A. Kamiya, K. Sasaki, H. Saka, in HT-CMC-1 : High Temperature Ceramic Matrix Composites, (R. Naslain et al., eds. ), p.413, Woodhead Publ. Abington-Cambridge, UK, (1993).

Google Scholar

[15] M. Suzuki, M. Sato, N. Miyamoto, A. Kohyama, in Mechanical Properties and Performance of Engineering Ceramics and Composites, (E. Lara-Curzio et al., eds. ), p.319, Am. Ceram. Soc., Westerville (OH), USA, (2005).

Google Scholar

[16] H.P. Baldus, G. Passing, D. Sporn, A. Thierauf, in Ceramic Transactions, (A.G. Evans, R. Naslain, eds. ), 58 (1995) p.75, Am. Ceram. Soc., Westerville (OH), USA.

Google Scholar

[17] O. Coindreau, G. Vignoles, J. Mater. Res., 20.

Google Scholar

[9] (2005) p.2328.

Google Scholar

[18] F. Loumagne, F. Langlais, R. Naslain, S. Schamm, D. Dorignac, J. Sevely, Thin Solid Films, 254 (1995) p.75.

DOI: 10.1016/0040-6090(94)06237-f

Google Scholar

[19] G.L. Vignoles, F. Langlais, C. Descamps, A. Mouchon, H. Le Poche, N. Reuge, N. Bertrand, Surface and Coatings Technol., 188-189 (2004) p.241.

DOI: 10.1016/j.surfcoat.2004.08.036

Google Scholar

[20] R. Naslain, R. Pailler, X. Bourrat, J.M. Goyheneche, A. Guette, F. Lamouroux, S. Bertrand, A. Fillion, in High Temperature Ceramic Matrix Composites 5 (M. Singh et al., eds. ), p.55, Am. Ceram. Soc., Westerville (OH), USA, (2005).

Google Scholar

[21] R. Naslain, Composites : Part A, 29A (1998) p.1145.

Google Scholar

[22] S. Jacques, B. Bonnetot, M-P. Berthet, H. Vincent, Proc. 28th Int. Cocoa Beach Conf. Expo. Adv. Ceramics and Composites (E. Lara-Curzio, M.J. Readey, eds. ), p.123, Am. Ceram. Soc., Westerville (OH), USA, (2004).

Google Scholar

[23] C. Racault, F. Langlais, R. Naslain, Y. Khin, J. Mater. Sci., 29 (1994) p.3941.

Google Scholar

[24] H. Hogberg, J. Emmerlich, P. Eklund, D. Rittrich, Proc. 30th Intern. Conf. Expo Adv. Ceram. Composites, Cocoa Beach (FL), Jan. 22-27, 2006 (to be published).

Google Scholar

[25] C. Droillard, PhD Thesis, n° 913, Univ. Bordeaux 1, June 19, (1993).

Google Scholar

[26] S. Bertrand, PhD Thesis, n° 1927, Univ. Bordeaux 1, Sept. 29, (1998).

Google Scholar

[27] F. Christin, in High Temperature Ceramic Matrix Composites, W. Krenkel et al., eds., p.731, Wiley-VCH, Weinheim (Germany), (2001).

Google Scholar

[28] J. Deng, Y. Wei, W. Liu, J. Am. Ceram. Soc., 82.

Google Scholar

[6] (1999) p.1629.

Google Scholar

[29] F. Lamouroux, S. Bertrand, R. Pailler, R. Naslain, M. Cataldi, Composites Sci. Technol., 59 (1999) p.1073.

DOI: 10.1016/s0266-3538(98)00146-8

Google Scholar

[30] X. Bourrat, M. Alrivie, A. Michaux, J. Europ. Ceram. Soc., 25 (2005) p.809.

Google Scholar

[31] L. Vandenbulcke, G. Fantozzi, S. Goujard, M. Bourgeon, Adv. Eng. Mater., 7.

Google Scholar

[3] (2005) p.137.

Google Scholar

[32] F. Christin, in High Temperature Ceramic Matrix Composites 5, (M. Singh et al., eds. ), p.477, Am. Ceram. Soc., Westerville (OH), USA, (2005).

Google Scholar

[33] W. J. Lackey, S. Vaidyaraman, K.L. More, J. Am. Ceram. Soc., 80.

Google Scholar

[1] (1997) p.113.

Google Scholar

[34] W. Yang, H. Araki, A. Kohyama, S. Thaveethavorn, H. Suzuki, T. Noda, J. Am. Ceram. Soc., 87.

Google Scholar

[9] (2004) p.1720.

Google Scholar

[35] J-Y. Park, H-S. Hwang, W-J. Kim, J-I. Kim, J-H. Son, B-J. Oh, S-J. Choi, J. Nuclear Mater., 307-311 (2002) p.1227.

Google Scholar

[36] S-M. Kang, J-Y. Park, W-J. Kim, S-G. Yoon, W-S. Ryu, J. Nuclear Mater., 329-333 (2004) p.550.

Google Scholar

[37] J.C. Ichard, PhD Thesis, n° 2625, Univ. Bordeaux 1, Dec. 17, (2002).

Google Scholar

[38] R. Pailler, J.C. Ichard, J. Lamon, in Proc. CIMTEC 2006, Ceramic Composites (to be published).

Google Scholar

[39] G. Zheng, H. Sano, Y. Uchiyama, K. Kobayashi, K. Suzuki, H. Cheng, J. Ceram. Soc. Japan, 106.

Google Scholar

[2] (1998) p.1155.

Google Scholar

[40] M. Takeda, Y. Kagawa, S. Mitsuno, Y. Imai, H. Ichikawa, J. Am. Ceram. Soc., 82.

Google Scholar

[6] (1999) p.1579.

Google Scholar

[41] F.I. Hurwitz, A.M. Calomino, T.R. McCue, Ceram. Eng. Sci. Proc., 20.

Google Scholar

[3] (1999) p.251.

Google Scholar

[42] K. Moraes, J.M. Jacobs, W.J. Sherwood, L.V. Interrante, Ceram. Eng. Sci. Proc., 21.

Google Scholar

[3] (2000) p.289.

Google Scholar

[43] M.F. Gonon, S. Hampshire, J. Europ. Ceram. Soc., 19 (1999) p.285.

Google Scholar

[44] D-P. Kim, C.G. Cofer, J. Economy, J. Am. Ceram. Soc., 78.

Google Scholar

[6] (1995) p.1546.

Google Scholar

[45] A. Müller, P. Gerstel, M. Weinmann, J. Bill, F. Aldinger, J. Europ. Ceram. Soc., 21 (2001) p.2171.

Google Scholar

[46] R. Kochendörfer, in Key Eng. Materials, 164-165 (1999) p.451, Trans. Tech. Publ., Uetikon-Zuerich, Switzerland.

Google Scholar

[47] W. Krenkel, R. Kochendörfer, in Progress in Adv. Mater. Mechanics (T-C. Wang, T-W. Chou, eds. ), p.192, Peking Univ. Press, China, (1966).

Google Scholar

[48] H. Mucha, A. Kamiya, B. Wielage, in Proc. ICCM-11, Vol. II (M.L. Scott, ed. ), p.717, Woodhead Publ. Abington-Cambridge (UK), (1997).

Google Scholar

[49] A.J. Dean, G.S. Corman, B. Bagepalli, K.L. Luthra, P.S. DiMascio, R.M. Orenstein, in Intern. Gas Turbine Aeroengine Congress Exhibition, 99GT 235, Indianapolis, June 7-10, (1999).

Google Scholar

[50] K Luthra, R. Singh, M. Brun, in High Temperature Ceramic Matrix Composites : HTCMC1, (R. Naslain et al., eds. ), p.429, Woodhead Publ. Abington-Cambridge (UK), (1993).

Google Scholar

[51] W.B. Hillig, Am. Ceram. Soc. Bull., 73.

Google Scholar

[4] (1994) p.56.

Google Scholar

[52] K. Luthra, G.S. Corman, in High Temperature Ceramic Matrix Composites, (W. Krenkel et al., eds. ), p.744, Wiley-VCH, Weinheim (Germany), (2001).

Google Scholar

[53] C.A. Nannetti, A. Borello, D.A. de Pinto, in High Temperature Ceramic Matrix Composites, (W. Krenkel et al., eds. ), p.368, Wiley-VCH, Weinheim (Germany), (2001).

Google Scholar

[54] S.P. Lee, Y. Katoh, T. Hinoki, M. Kotani, A. Kohyama, S. Suyama, Y. Itoh, Ceram. Eng. Sci. Proc., 21.

Google Scholar

[3] (2000) p.339.

Google Scholar

[55] T. Kameda, Y. Itoh, Key Eng. Mater., 164-165 (1999) p.95.

Google Scholar

[56] K. Prewo, J.J. Brennan, G.K. Layden, Am. Ceram. Soc. Bull., 65.

Google Scholar

[2] (1986) p.305.

Google Scholar

[57] A. Kohyama, S-M. Dong, Y. Katoh, Ceram. Eng. Sci. Proc., 23.

Google Scholar

[3] (2002) p.311.

Google Scholar

[58] Y. Katoh, S-M. Dong, A. Kohyama, Ceram. Trans., 144 (2002) p.77.

Google Scholar

[59] S-M. Dong, Y. Katoh, A. Kohyama, J. Europ. Ceram. Soc., 23 (2003) p.1223.

Google Scholar

[60] S-M. Dong, Y. Katoh, A. Kohyama, D-L. Jiang, in High Temperature Ceramic Matrix Composites 5, (M. Singh et al., eds. ), p.113, Am. Ceram. Soc., Westerville (OH), USA, (2004).

Google Scholar

[61] J-S. Lee, M. Imai, T. Yano, Mater. Sci. Eng. A 339 (2003) p.90.

Google Scholar

[62] K. Yoshida, H. Matsumoto, K. Hashimoto, Y. Toda, in High Temperature Ceramic Matrix Composites 5, (M. Singh et al., eds. ), p.119, Am. Ceram. Soc., Westerville (OH), USA, (2004).

Google Scholar

[63] E. Müller, R. Dittrich, K. Moritz, Adv. Eng. Mater., 6.

Google Scholar

[7] (2004) p.568.

Google Scholar

[64] A.R. Boccaccini, J.A. Rocther, D.J.C. Thomas, M.S.P. Shaffer, E. Chavez, E. Stoll, E.J. Minay, J. Ceram. Soc. Japan, 114.

Google Scholar

[1] (2006) p.1.

Google Scholar

[65] J.M. Yang, S.T.J. Chen, S.M. Jeng, R.B. Thayer, J-F. LeCoustaouec, J. Mater. Res., 6.

Google Scholar

[9] (1991) p. (1926).

Google Scholar

[66] B. Riccardi, C.A. Nannetti, J. Woltersdorf, E. Pippel, T. Petrisor, J. Mater. Sci., 37 (2002) p.5029 and Ceram. Trans., 144 (2002) p.311.

DOI: 10.1023/a:1021087632155

Google Scholar

[67] A. Donato, P. Colombo, M.O. Abdirashid, Ceram. Trans., 57 (1995) p.471.

Google Scholar

[68] P. Colombo, A. Donato, B. Riccardi, J. Woltersdorf, E. Pippel, R. Silberglitt, G. Danke, C. Lewinsohn, R. Jones, Ceram. Trans., 144 (2002) p.323.

Google Scholar

[69] M. Singh, in Key Eng. Mater., 164-165 (1999) p.415.

Google Scholar

[70] J.K. Lee, Y. Katoh, A. Kohyama, Ceram. Eng. Sci. Proc., 24.

Google Scholar

[4] (2003) p.325.

Google Scholar

[71] T. Hinoki, N. Eiza, S. Son, K. Shimoda, J. Lee, A. Kohyama, in Mechanical Properties and Performance of Engineering Ceramics (E. Lara-Curzio, ed. ), p.399, Am. Ceram. Soc., Westerville OH), USA, (2005).

Google Scholar

[72] A. Kohyama, Y. Katoh, Ceram. Trans., 144 (2002) p.3.

Google Scholar

[73] T. Hino, E. Hayashishita, Y. Yamauchi, M. Hoshiba, Y. Hirohata, A. Kohyama, Fusion Eng. Design, 73 (2005) p.51.

Google Scholar