Modelling of the CVI Processes

Article Preview

Abstract:

The chemical vapour infiltration (CVI) process is used to fabricate the interphases and matrices of CMCs. This process involves complex physico-chemical phenomena such as the transport of precursor, carrier, and by-product gases in the reactor and inside a fibrous preform, chemical reactions (pyrolysis and deposition), and the structural evolution of the preform. It is able to provide high-quality materials because the process conditions are rather mild with respect to the fibres ; however it is expensive and sometimes difficult to optimize. Many variations of the basic concept have been proposed in the past decades, introducing thermal and pressure gradients, in order to increase the efficiency. This process has been the object of extensive modelling efforts, because of imperative optimization needs. The present work is an attempt to provide a synthetic view of these models, focusing on several features of CVI modelling : i) Modelling CVI requires a multi-scale strategy, with models ranging from process scale down to atomic scale, ii) Original physicochemical couplings are involved, which require the development of adequate treatments, iii) There is a hierarchy of model refinement, ranging from fully detailed models to quasi-analytical predictions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-106

Citation:

Online since:

October 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Savage: Carbon/Carbon composites (Chapman & Hall, London 1993).

Google Scholar

[2] R. Naslain and F. Langlais: Mater. Sci. Res. Vol 20 (1992), p.145.

Google Scholar

[3] H. O. Pierson: Handbook of Thin-Film Deposition Processes and Techniques. (Noyes, Park Ridge, NJ, USA 1988).

Google Scholar

[4] R. Naslain, J. -Y. Rossignol, P. Hagenmuller, F. Christin, L. Héraud and J. J. Choury: Rev. Chim. Min. Vol. 18 (1981), p.544.

Google Scholar

[5] R. Naslain and F. Langlais: High Temperature Science Vol 27 (1990), p.221.

Google Scholar

[6] T. M. Besmann , B. W. Sheldon, R. A. Lowden and D. P. Stinton: Science Vol. 253 (1991), p.1104.

Google Scholar

[7] I. Golecki: Mater. Sci. Eng. Vol. R20 (1997), p.37.

Google Scholar

[8] S. M. Gupte and J. A. Tsamopoulos: J. Electrochem. Soc. Vol. 136 (1989), p.555.

Google Scholar

[9] R. Melkote and K. F. Jensen: Mater. Res. Soc. Symp. Proc. Vol. 168 (1990), p.67.

Google Scholar

[10] Y. G. Roman, J. F. A. K. Kotte and M. H. J. M. de Croon: J. Eur. Ceram. Soc. Vol 15 (1995), p.875.

Google Scholar

[11] T. L. Starr, A. W. Smith and G. F. Vinyard: Ceram. Eng. Sci. Proc. Vol. 12 (1991), p. (2017).

Google Scholar

[12] T. M. Besmann and J. C. McLaughlin: Proc. of the 18th Annual conference on Composites and Advanced Materials - B Vol. 15 (1994), p.897.

Google Scholar

[13] S. Vaidyaraman, W. J. Lackey, G. B. Freeman, P. K. Agrawal and M. D. Langman: J. Mater. Res. Vol. 10 (1995), p.1469.

Google Scholar

[14] I. Golecki, C. Morris and D. Narasimhan : US Patent no. 5 348 774 (1994).

Google Scholar

[15] I. Golecki, R. C. Morris, D. Narasimhan and N. Clements: Ceram. Trans. Vol. 79 (1996), p.135.

Google Scholar

[16] D. Gupta and J . W Evans: J. Mater. Res. Vol. 6 (1991), p.810.

Google Scholar

[17] J. I. Morell, D. J. Economou and N. R. Amundson: J. Mater. Res. Vol. 7 (1992), p.2447.

Google Scholar

[18] D. J. Devlin, R. P. Currier, R. S. Barbero and B. F. Espinoza: Mater. Res. Soc. Symp. Proc. Vol. 250 (1992), p.245.

Google Scholar

[19] D. J. Devlin, R. S. Barbero and K. N. Siebein: Electrochem. Soc. Proc. Series Vol. PV 96-5 (1996), p.571.

Google Scholar

[20] V. Midha and D. Economou: J. Electrochem. Soc. Vol. 144 (1997), p.4062.

Google Scholar

[21] D. Leutard, G. L. Vignoles, F. Lamouroux and B. Bernard: J. Mater. Synth. and Proc. Vol. 9 (2002), p.259.

Google Scholar

[22] M. Houdayer, J. Spitz and D. Tran Van: US Patent no. 472 454 (1984).

Google Scholar

[23] E. Bruneton, B. Narcy and A. Oberlin: Carbon Vol. 35 (1997), p.1593.

Google Scholar

[24] K. Sugiyama and Y. Kurisu: J. Mater. Sci. Vol. 27 (1992), p.4070.

Google Scholar

[25] R. Fédou, F. Langlais and R. Naslain: J. Mater. Synth. and Proc. Vol. 1 (1993), p.61.

Google Scholar

[26] A. -J. Li, H. -J. Li, K. -Z. Li and Z. -B. Gu: Science in China Vol. E46 (2003), p.173.

Google Scholar

[27] J. Y. Ofori and S. V. Sotirchos: Ind. Eng. Chem. Res. Vol. 35 (1996), p.1275.

Google Scholar

[28] E. A. Mason and A. P. Malinauskas: Gas transport in porous media: the Dusty-Gas Model (Elsevier, The Netherlands, 1983).

Google Scholar

[29] P. J. A. M. Kerkhof: Chem. Eng. J. Vol. 64 (1996), p.319.

Google Scholar

[30] W. -G. Zhang and K. J. Hüttinger: Compos. Sci. Technol. Vol. 62 (2002), p. (1947).

Google Scholar

[31] J. Y. Ofori and S. V. Sotirchos: J. Electrochem. Soc. Vol. 143 (1996), p. (1962).

Google Scholar

[32] P. McAllister and E. E. Wolf: AIChE J. Vol. 39 (1993), p.1196.

Google Scholar

[33] M. Sasaki: J. Mater. Synth. and Proc. Vol. 2 (1994), p.133.

Google Scholar

[34] V. G. Minkina: Theor. Found. Chem. Eng. Vol. 31 (1997), p.248.

Google Scholar

[35] N. Reuge and G. L. Vignoles: J. Mater. Proc. Technol. Vol. 166 (2005), p.15.

Google Scholar

[36] H. -C. Chang, D. Gottlieb, M. Marion and B. W. Sheldon: J. Sci. Comput. Vol. 13 (1998), p.303.

Google Scholar

[37] A. D. Jones Jr: Appl. Math. Modell. Vol. 30 (2006), p.293.

Google Scholar

[38] S. Middleman: J. Mater. Res. Vol. 4 (1989), p.1515.

Google Scholar

[39] D. Rovillain, M. Trinquecoste, E. Bruneton, A. Derré, P. David and P. Delhaès: Carbon Vol. 39 (2001), p.1355.

DOI: 10.1016/s0008-6223(00)00255-4

Google Scholar

[40] J. -F. Lines, G. L. Vignoles, J. -M. Goyhénèche and J. -R. Puiggali: J. Phys. IV France Vol. 120 (2005), p.291.

Google Scholar

[41] G.L. Vignoles, J. -M. Goyhénèche, P. Sébastian, J. -R. Puiggali, J. -F. Lines, J. Lachaud, P. Delhaès and M. Trinquecoste : Chem. Eng. Sci., to appear (2006).

DOI: 10.1016/j.ces.2006.04.025

Google Scholar

[42] G. L. Vignoles, N. Nadeau, C. -M. Brauner, J. -F. Lines and J. -R. Puiggali: Ceram. Eng. and Sci. Proc. Vol. 26 (2005), p.187.

Google Scholar

[43] N. Nadeau, G. L. Vignoles and C. -M. Brauner: Chem. Eng. Sci., submitted (2006).

Google Scholar

[44] J. Y. Ofori and S. V. Sotirchos: J. Electrochem. Soc. Vol. 144 (1997), p.274.

Google Scholar

[45] K. J. Probst, T. M. Besmann, D. P. Stinton, R. A. Lowden, T. J. Anderson and T. L. Starr: Surf. Coat. Technol. Vol. 120-121 (1999), p.250.

Google Scholar

[46] S. V. Sotirchos: AIChE J. Vol. 37 (1991), p.1365.

Google Scholar

[47] S. V. Sotirchos: in High Temperature Ceramic Matrix Composites, p.241 (Woodhead Publishing Ltd., UK, 1993).

Google Scholar

[48] J. Y. Ofori and S. V. Sotirchos: J. Mater. Res. Vol. 11 (1996), p.2541.

Google Scholar

[49] S. Bertrand, J. -F. Lavaud, R. El-Hadi, G. L. Vignoles and R. Pailler: J. Eur. Ceram. Soc. Vol. 18 (1998), p.857.

Google Scholar

[50] S. V. Sotirchos and M. M. Tomadakis: Mater. Res. Soc. Symp. Proc. Vol. 168 (1990), p.73.

Google Scholar

[51] G. L. Vignoles: J. de Phys. IV Vol. C5 (1995), p.159.

Google Scholar

[52] M. M. Tomadakis and S. V. Sotirchos: J. Chem. Phys. Vol. 98 (1993), p.616.

Google Scholar

[53] T. L. Starr: J. Mater. Res. Vol. 10 (1995), p.2360.

Google Scholar

[54] D. L. Johnson, J. Koplik and L. M. Schwartz: Phys. Rev. Lett. Vol. 57 (1986), p.2564.

Google Scholar

[55] M. M. Tomadakis and T. J. Robertson: J. Compos. Mater. Vol. 39 (2005), p.163.

Google Scholar

[56] D. J. Skamser, D. P. Bentz, R. T. Coverdale, M. S. Spotz, N. Martys, H. Jennings and D. L. Johnson: J. Amer. Ceram. Soc. Vol. 77 (1994), p.2669.

DOI: 10.1111/j.1151-2916.1994.tb04660.x

Google Scholar

[57] J. H. Kinney, T. M. Breunig, T. L. Starr, D. Haupt, M. C. Nichols, S. R. Stock, M. D. Butts, and R. A. Saroyan: Science Vol. 260 (1993), p.789.

DOI: 10.1126/science.260.5109.789

Google Scholar

[58] S. -B. Lee, S. R. Stock, M. D. Butts, T. L. Starr, T. M. Breunig, and J. H. Kinney: J. Mater. Res. Vol. 13 (1998), p.1209.

Google Scholar

[59] O. Coindreau and G. L. Vignoles: Mater. Sci. Forum Vol. 455-456 (2004), p.751.

Google Scholar

[60] G. L. Vignoles: Carbon Vol. 39 (2001), p.167.

Google Scholar

[61] O. Coindreau and G. L. Vignoles, J. Mater. Res. vol. 20 (2005), p.2328.

Google Scholar

[62] O. Coindreau, G. L. Vignoles, and J. -M. Goyhénèche: Ceram. Trans. Vol. 175 (2005), p.71.

Google Scholar

[63] O. Coindreau, PhD Thesis, University Bordeaux 1 (2003).

Google Scholar

[64] S. Jin and X. -L. Wang: J. Comput. Phys. Vol. 186 (2003), p.582.

Google Scholar

[65] D. Bernard and G. L. Vignoles, Theor. and Appl. of Transp. in Porous Media Vol. 17 (2000), p.217.

Google Scholar