Isolated and Grouped Co Spins in Polycrystalline Zn1-xCoxO Oxides

Article Preview

Abstract:

Polycrystalline stoichiometric Co-substituted ZnO oxides have been synthesized by solid state reaction via sintering ZnO and Co powders in air. The precise nature of magnetic coupling is determined by studying carefully structural and magnetic properties. The magnetization as a function of temperature for Zn1-xCoxO (x = 0.02, 0.05, 0.0625 and 0.10) can be fitted well to a model with a paramagnetic Curie term, an antiferromagnetic Curie-Weiss term and a diamagnetic constant, which could arise from spins of isolated Co ions, grouped Co ions that are in nearest neighbor positions and a diamagnetic background, respectively. The substitution of Co at the Zn sites does not occur in a completely random manner but the Co ions appear to have a tendency for grouping. It is interesting to note in Raman measurements that host lattice defects with 2 distinct impurity modes may be induced by isolated and grouped Co spins.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-30

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Prellier, A. Fouchet and B. Mercey: J. Phys.: Condens. Matter 15 (2003), p. R1583.

DOI: 10.1088/0953-8984/15/37/r01

Google Scholar

[2] S.J. Pearton, W.H. Heo, M. Ivill, D.P. Norton and T. Steiner: Semicond. Sci. Technol. 19 (2004), p. R59.

DOI: 10.1088/0268-1242/19/10/r01

Google Scholar

[3] K. Sato and H. Katayama-Yoshida: Jpn. J. Appl. Phys. Part 2 39 (2000), p. L555.

Google Scholar

[4] K. Sato and H. Katayama-Yoshida: Jpn. J. Appl. Phys. Part 2 40 (2001), p. L334.

Google Scholar

[5] K. Ueda, H. Tabata and T. Kawai: Appl. Phys. Lett. 79 (2001), p.988.

Google Scholar

[6] S. -W. Lim, D. -K. Hwang and J. -M. Myoung: Solid State Commun. 125 (2001), p.988.

Google Scholar

[7] Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y.Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa and H. Koinuma: Appl. Phys. Lett. 78 (2001), p.3824.

DOI: 10.1063/1.1377856

Google Scholar

[8] J.H. Park, M.G. Kim, H.M. Jang, S. Ryu and Y.M. Kim: Appl. Phys. Lett. 84 (2004), p.1338.

Google Scholar

[9] N.W. Ashcroft and N. David Mermin: Solid State Physics (Harcourt Brace College, Orlando, FL 1976), p.658.

Google Scholar

[10] S.W. Yoon, S. -B. Cho, S.C. We, S. Yoon, B.J. Suh, H.K. Song and Y.J. Shin: J. Appl. Phys. 93 (2003), p.7879.

Google Scholar

[11] A.S. Risbud, N.A. Spaldin, Z.Q. Chen, S. Stemmer and R. Seshadri: Phys. Rev. B 68 (2003), p.205202.

Google Scholar

[12] R.H. Callender, S.S. Sussman, M. Selders and R.K. Chang: Phys. Rev. B 7 (1973), p.3788.

Google Scholar

[13] N. Hasuike, H. Fukumura, H. Harima, K. Kisoda, H. Matsui, H. Saeki and H. Tabata: J. Phys.: Condens. Matter 16 (2004), p. S5807.

DOI: 10.1088/0953-8984/16/48/053

Google Scholar