Ferromagnetic Property of Co and Fe-Implanted ZnO Thin Film at Room Temperature

Article Preview

Abstract:

The results Co and Fe implanted ZnO thin films were studied before and after 200 MeV Ag ion irradiation. The as-implanted films shows the presence of nano sized Co and Fe clusters as seen through XRD patterns and exhibited high resistivity compared to un-implanted films. After Ag ion irradiation the Co and Fe clusters get dissolved in ZnO lattice and the films resistivity reduced to half of the as implanted values. The magnetic properties of Ag irradiated films were confirmed through magnetization hysteresis and Co implanted films exhibit higher magnetization compared to Fe implanted films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

42-47

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. A. Wolf, D. D. Awschalom, R. A. Burhman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova and D. M. Treger, Science Vol. 294 (2001), p.1488.

DOI: 10.1126/science.1065389

Google Scholar

[2] I. Malajovich, J. J. Berry, N. Samarth and D. D. Awschalom, Nature Vol. 411 (2001), p.770.

Google Scholar

[3] H. Ohno, Science Vol. 281 (1998), p.951.

Google Scholar

[4] J.K. Furdyna and J. Kossut: Diluted magnetic semiconductors, semiconductors and semimetals, (Academic, Boston 1988).

Google Scholar

[5] T. Dietle, H. Ohno, F. Matsukura, J. Cibert, T. Fukumura and M. Koinuma, Science Vol. 291 (2001), p.854.

Google Scholar

[6] S. von Molnar and D. Read, Proc. IEEE Vol. 91 (2003), p.715.

Google Scholar

[7] K. Sato and H. Katyama, Physica B Vol. 308 (2001), p.904.

Google Scholar

[8] K. Ueda, H. Tabata and T. Kawai, Appl. Phys. Lett. Vol. 79 (2001), p.988.

Google Scholar

[9] S-J. Han, J.W. Song, C. -H. Yang, S.H. Park, J. -H. Park, Y.H. Jeong, and K.W. Rhie, Appl. Phys. Lett. Vol. 81 (2002), p.4212.

Google Scholar

[10] P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M. Osorio Guillen, B. Johansson and G.A. Gehring, Nature Materials Vol. 2 (2003), p.673.

DOI: 10.1038/nmat984

Google Scholar

[11] D.P. Norton, M.E. Overberg, S.J. Pearton, K. Pruessner, J.D. Budai, L.A. Boatner, M.F. Chisholm, J.S. Lee, Z.G. Khim, Y.D. Park and R.G. Wilson, Appl. Phys. Lett. Vol. 83 (2003), p.5488.

DOI: 10.1063/1.1637719

Google Scholar

[12] N.A. Theodoropoulou, A.F. Hebard, D.P. Norton, J.D. Budai, L.A. Boatner, J.S. Lee, Z.G. Khim, Y.D. Park, M.E. Overberg, S.J. Pearton and R.G. Wilson, Solid State Electronics Vol. 47 (2003), p.2231.

DOI: 10.1016/s0038-1101(03)00203-x

Google Scholar

[13] R. Kumar, R.J. Choudhary, S.I. Patil, Shahid Husain, J.P. Srivastava, S.P. Sanyal and S.E. Lofland, J. Appl. Phys. Vol. 96 (2004), p.7383.

Google Scholar

[14] S. Khatua, P.K. Mishra, Ravi Kumar, D.C. Kundaliya, D. Buddhikot, R. Pinto and S.K. Malik, J. Appl. Phys. Vol. 96 (2004), p.7403.

Google Scholar

[15] B. Angadi, V.M. Jali, M.T. Lagare, N.S. Kini, A.M. Umarji, R. Kumar, S.K. Arora and D. Kanjilal. Nucl. Instr. And Meth. Part B Vol. 187 (2002), p.87.

Google Scholar

[16] D. Lesueur and A. Dunlop, Rad. Eff. and Def. in Solids Vol. 126 (1993), p.163.

Google Scholar

[17] G. Szenes, Phys. Rev. B Vol. 51 (1995), p.8026.

Google Scholar

[18] Y.S. Jung, O. Kononenko, J.S. Kim and W.K. Choi, J. Cryst. Growth Vol. 214 (2005), p.418.

Google Scholar

[19] D.H. Kim, J.S. Yang, Y.S. Kim, T.W. Noh, S.D. Bu, S. -I. Baik, Y. -W. Kim, Y.D. Park, S.J. Pearton, J. -Y. Kim, J. -H. Park, H. -J. Lin, C.T. Chen, and Y.J. Song, Phys. Rev. B Vol. 71 (2005), p.014440.

Google Scholar

[20] J. H. Park, M.G. Kim, H.M. Jang, Sangwoo Ryu, and Y.M. Kim, Appl. Phys. Lett. Vol. 84 (2004), p.1338.

Google Scholar

[21] M. M. Venkatesan, C. B. Fitzgerald, J. G. Lunney, and J. M. D. Coey, Phys. Rev. Lett. Vol. 93 (2004), p.177206.

Google Scholar