Magnetic Field Effects on Current, Electroluminescence and Photocurrent in Alq3 Organic Light Emitting Diodes

Article Preview

Abstract:

We report on the experimental observation of large magnetoresistance in Alq3 organic light-emitting diodes (OLEDs). Very similar magnetic field effects (MFEs) of comparable magnitude are also observed in electroluminescence and photocurrent measurements. We also report on the frequency response of the magnetoresistance effect at frequencies below 100 kHz. To the best of our knowledge, the mechanism causing these MFE is currently not known.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-61

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, et al., 397, 121-128, (1999).

DOI: 10.1038/16393

Google Scholar

[2] S. R. Forrest, Nature, 428, 911-918, (2004).

Google Scholar

[3] C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Func. Mat., 11, 15-26, (2001).

Google Scholar

[4] S. R. F. Peter Peumans, Soichi Uchida and Stephen R. Forrest, Nature, 425, 158-162, (2003).

Google Scholar

[5] M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Anderson, and R. H. Friend, , Nature, 395, 257-260, (1998).

Google Scholar

[6] C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mat., 14, 99-117, (2002).

Google Scholar

[7] D. J. Gundlach, Y. Y. Lin, and T. N. Jackson, IEEE Electron. Dev. Lett. , 18, 87-89, (1997).

Google Scholar

[8] M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, Appl. Phys. Lett., 81, 268-270, (2002).

Google Scholar

[9] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, and Z. V. Vardeny, Nature, 409, 494-497, (2001).

DOI: 10.1038/35054025

Google Scholar

[10] Dediu, M. Murgia, F. C. Matacotta, C. Taliani, and S. Barbanera, Solid State Commun., 122, 181-184, (2002).

DOI: 10.1016/s0038-1098(02)00090-x

Google Scholar

[11] Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, Nature, 427, 821, (2004).

Google Scholar

[12] B. Hu, Y. Wu, Z. Zhang, S. Dai, and J. Shen, Effects of ferromagnetic nanowires on singlet and triplet exciton fractions in fluorescent and phosphorescent organic semiconductors, Appl. Phys. Lett., 88, 022114, (2006).

DOI: 10.1063/1.2162801

Google Scholar

[13] T. L. Francis, O. Mermer, G. Veeraraghavan, and M. Wohlgenannt, New J. Phys. 6, 185, (2004).

Google Scholar

[14] O. Mermer, G. Veeraraghavan, T. Francis, and M. Wohlgenannt, Solid State Commun., 134, 631-636, (2005).

DOI: 10.1016/j.ssc.2005.02.044

Google Scholar

[15] O. Mermer, G. Veeraraghavan, T. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Kohler, M. Al-Suti, and M. Khan, Phys. Rev. B, 72, 205202, (2005).

Google Scholar

[16] O. Mermer, G. Veeraraghavan, T. L. Francis, and M. Wohlgenannt, cond-mat/0312204, (2003).

Google Scholar

[17] J. Kalinowski, J. Phys. D: Appl. Phys., 32, R179-R249, (1999).

Google Scholar

[18] J. Kalinowski, M. Cocchi, D. Virgili, V. Fattori, and P. D. Marco, Phys. Rev. B, 70, 205303, (2004).

Google Scholar

[19] A. H. Davis and K. Bussmann, J. Vac. Sci. & Techn. A, 22, 1885-1891, (2004).

Google Scholar

[20] Y. Yoshida, A. Fujii, M. Ozaki, K. Yoshino, and E. L. Frankevich, Mol. Cryst. Liquid Cryst. 426, 19-24, (2005).

Google Scholar

[21] G. Salis, S. F. Alvarado, M. Tschudy, T. Brunschwiler, and R. Allenspach, Phys. Rev. B 70, 085203, (2004).

Google Scholar

[22] V. N. Prigodin, N. P. Raju, K. I. Pokhodnya, J. S. Miller and A. J. Epstein, Adv. Mat., 14, 1230-1233, (2002).

DOI: 10.1002/1521-4095(20020903)14:17<1230::aid-adma1230>3.0.co;2-5

Google Scholar

[23] N. P. Raju, T. Savrin, V. N. Prigodin, K. I. Pokhodnya, J. S. Miller, and A. J. Epstein, J. Appl. Phys., 93, 6799-6801, (2003).

Google Scholar

[24] E. Frankevich, A. Lymarev, I. Sokolik, F. Karasz, S. Blumstengel, R. Baughman, and H. Hoerhold, Phys. Rev. B, 46, 9320-9324, (1992).

DOI: 10.1103/physrevb.46.9320

Google Scholar

[25] E. Frankevich, A. Zakhidov, K. Yoshino, Y. Maruyama, and K. Yakushi, Phys. Rev. B, 53, 4498-4508, (1996).

Google Scholar

[26] J. Kalinowski, J. Szmytkowski, and W. Stampor, Chem. Phys. Lett, 378, 380-387, (2003).

Google Scholar

[27] J. Kalinowski, M. Cocchi, D. Virgili, P. Di Marco, and V. Fattori, Chem. Phys. Lett. , 380, 710-715, (2003).

Google Scholar

[28] R. Xu, A. Husmann, T. F. Rosenbaum, M. -L. Saboungi, J. E. Enderby, and P. B. Littlewood, Nature, 390, 57-60, (1997).

DOI: 10.1038/36306

Google Scholar

[29] T. K. Daubler, D. Neher, H. Rost, and H. H. Horhold, Phy. Rev. B, 59, 1964-1972, (1999).

Google Scholar

[30] A. M. Goodman and A. Rose, Journal of Applied Physics, 42, 2823-2830, (1971).

Google Scholar

[31] P.W.M. Blom, et al., Mater. Sci. Eng. R.: Rep. 27, 53-94, (2000).

Google Scholar

[32] M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals (New York: Clarendon), (1999).

Google Scholar

[33] Y. Sheng, D. T. Nguyen, G. Veeraraghavan, O. Mermer, M. Wohlgenannt and S. Qiu, U. Scherf submitted to Phys. Rev. B.

Google Scholar