Size-Controlled Hydroxyapatite Nanoparticles as Self-Organized Organic-Inorganic Composite Materials

Article Preview

Abstract:

Sodium salt carboxymethyl cellulose (CMC) was used to prepare HAp-CMC composites through co-precipitation process. HAp nanorods with well controlled particle size were welll aligned along the c axis in the final composites. TEM, XRD, FTIR analysis were used to characterized the samples. It was found that the carboxyl groups in cellulose might be the main guiding site for the precipitation and growth of HAp and the formation of the resulting composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

32-37

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Weiner and H.D. Wagner: Annu. Rev. Mater. Sci. Vol. 28 (1998), p.271.

Google Scholar

[2] M.D. Daniel and A.A. Ilhan: Annu. Rev. Mater. Sci. Vol. 30 (2000)p.601.

Google Scholar

[3] A. M. Belcher et al: Nature Vol. 381(1996), p.56.

Google Scholar

[4] P. A. Raj, M. Johnson, J. M. Levine and H.G. Nancollas: J. Biol. Chem. Vol. 267 (1992), p.5968 Ca(NO3)2⋅ H2O HAp grains Ca 2+ (NH4)2HPO4.

Google Scholar

[5] R.H. Clark, A.A. Campbell, L.A. Klumb, C.J. Long and P.S. Stayton: Calcif. Tissue Int. Vol. 64 (1999), p.516.

Google Scholar

[6] L. Addadi, S. Weiner: Proc. Natl. Acad. Sci. U.S.A. Vol. 82(1985), p.4110.

Google Scholar

[7] A. George, L. Bannon, B. Sabsay, J.W. Dillon, J. Malone, A. Veis N.A. Jenkins, D.J. Gillbert and N.G. Copeland: J. Biol. Chem. Vol. 271(1996), p.32869.

Google Scholar

[8] A.P. Alivisatos et al: Nature Vol. 382(1996), p.609.

Google Scholar

[9] C.A. Mirkin, R.L. Letsinger, R.C. Mucic and J.J. Storhoff:. Nature Vol. 382(1996), p.607.

Google Scholar

[10] J. -H Bradt, M. Mertig, A Teresiak and W. ol Pompe: Chem. Mater. Vol. 11(1999), p.2694.

Google Scholar

[11] F. Miyaji, H. -M. Kim, S. Handa, T. Kokubo and T. Nakamura: Biomaterials, Vol. 20(1999), p.913.

Google Scholar

[12] N. Ignjatović, S. Tomić, M. Dakić, M. Miljković, M. Plavsić and D. Uskoković: Biomaterials Vol. 20(1999) , p.809.

Google Scholar

[13] A. Bigi, E. Boanini, S. Panzavolta, N. Roveri, Biomacromolecules Vol 1(2000), p.752.

Google Scholar

[14] J. D. Hartgerink, E. Beniash and S. I. Stupp: Science Vol. 294(2001) , p.1684.

Google Scholar

[15] M. Kikuchi, S. Itoh, S. Ichinose, K. Shinomiya and J. Tanaka: Biomaterials Vol. 22 (2001), p.1705.

Google Scholar

[16] Y. Yang, J.L. Magnay, L. Cooling and A.J. El Haj: Biomaterials Vol. 23(2002), p.2119.

Google Scholar

[17] S. -N. Park, J. -C. Park, H.O. Kim, M.J. Song and H. Suh: Biomaterials Vol. 23(2002), p.1205.

Google Scholar

[18] W. Zhang, S.S. Liaoand F.Z. Cui: Chem. Mater. Vol. 15(2003), p.3221.

Google Scholar

[19] B. Zhao, H. Hu, S. K. Mandal and R. C. Haddon: Chem. Mater. Vol. 17(2005), p.3235.

Google Scholar

[20] S.I. Stupp and P.V. Braun: Science Vol. 277(1997), p.1242.

Google Scholar

[21] E. Landi, A. Tampieri, G. Celotti and S. Sprio: J Eur Ceram Soc Vol. 20(2000), p.2377.

Google Scholar

[22] X. -D. Fan, Y. -L. Hsieh, J. M. Krochta and M. J. Kurth: Journal of Applied Polymer Science Vol. 82(2001), p.1921.

Google Scholar