Preparation, Characterization and Applications of Glass-Ceramic-to-Metal Seals

Article Preview

Abstract:

It is recognized that many factors need to be taken into consideration in the successful design and manufacture of high quality glass-ceramic-to-metal seals, particularly if an adequate component lifetime is to be achieved. During their preparation, undesirable reactions may occur between diffusing metal species and glass constituents, and these can lead to the formation of highly localized internal stresses, the presence of which can initiate failure of a seal either during manufacture or, more seriously, whilst in service due to the influence of static fatigue. In the case of high temperature systems, reactions under hostile operating conditions also need to be taken into consideration. A thorough understanding of the relevant glass-ceramic/metal interactions is therefore required in order that steps can be taken to avoid or at least minimize reactions within the interfacial region that may lead to localized modifications of the glass-ceramic microstructure. In this contribution, factors influencing the lifetime behaviour of glass-ceramic/metal systems are reviewed and discussed, with particular reference given to SOFC sealants and also to advanced electrical components developed at AWE including seals to stainless steels and Ni-based superalloys. Fundamental studies on bonding to pure Fe, Ni and Cr are also included.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-144

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. W. Donald, Glass-to-Metal Seals, Society of Glass Technology, (Sheffield), (2007).

Google Scholar

[2] P. W. McMillan, B. P. Hodgson, Making glass-ceramic to metal seals, Engineering, 196, (1963), 366-377.

Google Scholar

[3] I. W. Donald, Review: Preparation, properties and chemistry of glass- and glass-ceramic-to- metal seals and coatings, J. Mat. Sci., 28, (1993), 2841-2886.

DOI: 10.1007/bf00354689

Google Scholar

[4] I. W. Donald, B. L. Metcalfe, L. A. Gerrard, and S. K. Fong, Diffusion of metallic species and their influence on interfacial reactions in glass-ceramic-to-metal seals, Adv. Sci. & Tech., 45, (2006), 1520-1525.

Google Scholar

[5] I. W. Donald, B. L. Metcalfe, and L. A. Gerrard, Interfacial reactions in glass-ceramic-to- metal seals, J. Amer. Ceram. Soc., 91, (2008), 715-720.

DOI: 10.1111/j.1551-2916.2007.02024.x

Google Scholar

[6] L. D. Haws, D. P. Kramer, W. E. Moddeman, and G. W. Wooten, High strength glass- ceramic-to-metal seals, Technical Report MLM-3288(OP), Dec. (1985).

DOI: 10.2172/6910209

Google Scholar

[7] F. Hong, and D. Holland, Bonding glass ceramics to high temperature alloys, Surface & Coating Tech., 39/40, (1989), 19-27.

DOI: 10.1016/0257-8972(89)90037-6

Google Scholar

[8] F. Hong, and D. Holland, Studies of interface reactions between glass ceramic coatings and metals, J. Non-Cryst. Solids, 112, (1989), 357-363.

DOI: 10.1016/0022-3093(89)90553-x

Google Scholar

[9] J. W. Fergus, Review: Sealants for solid oxide fuel cells, J. Power Sources, 147, (2005), 46- 57.

DOI: 10.1016/j.jpowsour.2005.05.002

Google Scholar

[10] S. T. Reis, and R. K. Brow, Designing sealing glasses for solid oxide fuel cells, J. Mater. Eng and Performance, 15, (2006), 410-413.

DOI: 10.1361/105994906x117206

Google Scholar

[11] R. N. Singh, Sealing technology for solid oxide fuel cells (SOFC), Int. J. Appl. Ceram. Technol., 4, (2007), 134-144.

Google Scholar

[12] M. K. Mahapatra, and K. Lu, Glass-based seals for solid oxide fuel and electrolyzer cells - A review, Mater. Sci. Eng. R., 67, (2010), 65-85.

DOI: 10.1016/j.mser.2009.12.002

Google Scholar

[13] J. Pascual, A. Guillet, and A. Durán, Optimization of glass-ceramic sealant compositions in the system MgO-BaO-SiO2 for solid oxide fuel cells (SOFC), J. Power Sources, 169, (2007), 40-46.

DOI: 10.1016/j.jpowsour.2007.01.040

Google Scholar

[14] R. Wang, Z. Lu, C. Liu, R. Zhu, X. Huang, B. Wei, N. Ai, and W. Su, Characteristics of a SiO2-B2O3-Al2O3-BaCO3-PbO2-ZnO glass-ceramic sealant for SOFCs, Jnl. Alloys and Compounds, 423, (2007), 189-193.

DOI: 10.1016/j.jallcom.2006.05.105

Google Scholar

[15] P. Jinhua, S. Kening, Z. Naiqing, and C. Xinbing, Sealing glass of barium-calcium- aluminosilicate system for solid oxide fuel cells, J. Rare Earths, 25, (2007), 434-438.

DOI: 10.1016/s1002-0721(07)60451-7

Google Scholar

[16] A. Goel, D. U. Tulyaganov, V. V. Kharton, A. A. Yaremchenko, and J. M. F. Ferreira, The effect of Cr2O3 addition on crystallization and properties of La2O3-containing diopside glass- ceramics, Acta Materialia, 56, (2008), 3065-3076.

DOI: 10.1016/j.actamat.2008.02.036

Google Scholar

[17] S. Ghosh, A. Das Sharma, P. Kundu, S. Mahanty, and R. N. Basu, Development and characterization of BaO-CaO-Al2O3-SiO2 glass-ceramic sealants for intermediate temperature solid oxide fuel cell application, J. Non-Cryst. Solids, 354, (2008).

DOI: 10.1016/j.jnoncrysol.2008.05.036

Google Scholar

[18] K. D. Meinhardt, D-S. Kim, Y-S, Chou, and K. S. Weil, Synthesis and properties of a barium aluminosilicate solid oxide fuel cell glass-ceramic seal, J. Power Sources, 182, (2008), 188- 196.

DOI: 10.1016/j.jpowsour.2008.03.079

Google Scholar

[19] E. V. Stephens, J. S. Vetrano, B. J. Koeppel, Y. Chou, X. Sun, and M. A. Khaleel, Experimental characterization of glass-ceramic seal properties and their constitutive implementation in solid oxide fuel cell stack models, J. Power Sources, 193, (2009).

DOI: 10.1016/j.jpowsour.2009.02.080

Google Scholar

[20] A. Goel, D. U. Tulyaganov, V. V. Kharton, A. A. Yaremchenko, S. Eriksson, and J. M. F. Ferreira, Optimzation of La2O3-containing diopside based glass-ceramic sealants for fuel cell applications, J. Power Sources, 189, (2009), 1032-1043.

DOI: 10.1016/j.jpowsour.2009.01.013

Google Scholar

[21] S-F. Wang, Y-R. Wang, Y-F. Hsu, and C-C. Chuang, Effect of additives on the thermal properties and sealing characteristic of BaO-Al2O3-B2O3-SiO2 glass-ceramic for solid oxide fuel cell application, Int. J. Hydrogen Energy, 34, (2009).

DOI: 10.1016/j.ijhydene.2009.07.094

Google Scholar

[22] S. Ghosh, A. D. Sharma, A. K. Mukhopadhyay, P. Kundu, and R. N. Basu, Effect of BaO addition on magnesium lanthanum alumino borosilicate-based glass-ceramic sealant for anode-supported solid oxide fuel cell, Int. J. Hydrogen Energy, 35, (2010).

DOI: 10.1016/j.ijhydene.2009.10.006

Google Scholar

[23] T. Sun, H. Xiao, W. Guo, and X. Hong, Effect of Al2O3 content on BaO-Al2O3-B2O3-SiO2 glass sealant for solid oxide fuel cell, Ceram. Int., 36, (2010), 821-826.

DOI: 10.1016/j.ceramint.2009.09.045

Google Scholar

[24] S. Sakuragi, Y. Funahashi, T. Suzuki, Y. Fujishiro, and M. Awano, J. Power Sources, 185, (2008), 1311-1314.

DOI: 10.1016/j.jpowsour.2008.08.081

Google Scholar

[25] F. Smeacetto, M. Salvo, M. Ferraris, J. Cho., and A. R. Boccaccini, Glass-ceramic seal to join Crofer 22 APU alloy to YSZ ceramic in planar SOFCs, J. Europ. Ceram. Soc., 28, (2008), 61- 68.

DOI: 10.1016/j.jeurceramsoc.2007.05.006

Google Scholar

[26] F. Smeacetto, M. Salvo, M. Ferraris, V. Casalegno, P. Asinari, and A. Chrysanthou, Characterization and performance of glass-ceramic sealant to join metallic interconnects to YSZ and anode-supported electrolyte in planar SOFs, J. Europ. Ceram. Soc., 28, (2008).

DOI: 10.1016/j.jeurceramsoc.2008.03.035

Google Scholar

[27] V. Kumar, A. Arora, O. P. Pandey, and K. Singh, Studies on thermal and structural properties of glasses as sealants for solid oxide fuel cells, Int. J. Hydrogen Energy, 33, (2008), 434-438.

DOI: 10.1016/j.ijhydene.2007.07.049

Google Scholar

[28] F. Smeacetto, A. Chrysanthou, M. Salvo, Z. Zhang, and M. Ferraris, Performance and testing of glass-ceramic sealant used to join anode-supported-electrolyte to Crofer22APU in planar solid oxide fuel cells, J. Power Sources, 190, (2009).

DOI: 10.1016/j.jpowsour.2009.01.042

Google Scholar

[29] A. Goel, D. U. Tulyaganov, V. V. Kharton, A. A. Yaremchenko, and J. M. F. Ferreira, Electrical behavior of aluminosilicate glass-ceramic sealants and their interaction with metallic solid oxide fuel cell interconnects, J. Power Sources, 195, (2010).

DOI: 10.1016/j.jpowsour.2009.08.007

Google Scholar

[30] F. Smeacetto, M. Salvo, F. D. D'Hérin Bytner, P. Leone, and M. Ferraris, New glass and glass-ceramic sealants for planar solid oxide fuel cells, J. Europ. Ceram. Soc., 30, (2010), 933- 940.

DOI: 10.1016/j.jeurceramsoc.2009.09.033

Google Scholar

[31] N. Laorodphan, P. Namwong, W. Thiemsorn, M. Jaimasith, A. Wannagon, and T. Chairuangsri, A low silica, barium borate glass-ceramic for use as seals in planar SOFCs, J. Non-Cryst. Solids, 355, (2009), 38-44.

DOI: 10.1016/j.jnoncrysol.2008.07.044

Google Scholar

[32] Z. Yang, J. W. Stevenson, and K. D. Meinhardt, Chemical interactions of barium-calcium aluminosilicate-based sealing glasses with oxidation resistant alloys, Solid State Ionics, 160, (2003), 213-225.

DOI: 10.1016/s0167-2738(03)00160-7

Google Scholar

[33] H. Tu, and U. Stimming, Advances, aging mechanisms and lifetime in solid-oxide fuel cells, J. Power Sources, 127, (2004), 284-293.

DOI: 10.1016/j.jpowsour.2003.09.025

Google Scholar

[34] V. A. C. Haanappel, V. Shemet, S. M. Gross, Th. Koppitz, N. H. Menzler, M. Zahid, and W. J. Quadakkers, Behaviour of various glass-ceramic sealants with ferritic steels under simulated SOFC stack conditions, J. Power Sources, 150, (2005).

DOI: 10.1016/j.jpowsour.2005.02.015

Google Scholar

[35] N. H. Menzler, D. Sebold, M. Zahid, S. M. Gross, and T. Koppitz, Interaction of metallic SOFC interconnect materials with glass-ceramic sealant in various atmospheres, J. Power Sources, 152, (2005), 156-167.

DOI: 10.1016/j.jpowsour.2005.02.072

Google Scholar

[36] P. Batfalsky, V. A. C. Haanappel, J. Malzbender, N. H. Menzler, V. Shemet, I. C. Vinke, and R. W. Stenbrech, Chemical interaction between glass-ceramic sealants and interconnect steels in SOFC stacks, J. Power Sources, 155, (2006), 128-137.

DOI: 10.1016/j.jpowsour.2005.05.046

Google Scholar

[37] W. Liu, X. Sun, and M. A. Khaleel, Predicting Young's modulus of glass/ceramic sealant for solid oxide fuel cell considering the combined effects of aging, micro-voids and self-healing, J. Power Sources, 185, (2008), 1193-1200.

DOI: 10.1016/j.jpowsour.2008.07.017

Google Scholar

[38] Y-S. Chou, J. W. Stevenson, and P. Singh, Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect, J. Power Sources, 184, (2008).

DOI: 10.1016/j.jpowsour.2008.06.020

Google Scholar

[39] T. Zhang, Q. Zhu, and Z. Xie, Modeling of cracking of the glass-based seals for solid oxide fuel cell, J. Power Sources, 188, (2009), 177-183.

DOI: 10.1016/j.jpowsour.2008.11.053

Google Scholar

[40] L. Peng, and Q. Zhu, Thermal cycle stability of BaO-B2O3-SiO2 sealing glass, J. Power Sources, 194, (2009), 880-885.

DOI: 10.1016/j.jpowsour.2009.06.018

Google Scholar

[41] J. Salem, and R. Tandon, Test method variability in slow crack growth properties of sealing glasses, Int. J. Fatigue, 32, (2010), 557-564.

DOI: 10.1016/j.ijfatigue.2009.07.018

Google Scholar

[42] W. N. Liu, X. Sun, B. Koeppel, and M. Khaleel, Experimental study of the aging and self- healing of the glass/ceramic sealant used in SOFCs, Int. J. Appl. Ceram. Technol., 7, (2010), 22-29.

DOI: 10.1111/j.1744-7402.2009.02417.x

Google Scholar

[43] J. Milhans, M. Khaleel, X. Sun, M. Tehrani, M. Al-Haik, and H. Armestani, Creep properties of solid oxide fuel cell glass-ceramic seal G18, J. Power Sources, 195, (2010), 3631-3635.

DOI: 10.1016/j.jpowsour.2009.12.038

Google Scholar

[44] H-T. Chang, C-K, Lin and C-K. Liu, Effects of crystallization on the high-temperature mechanical properties of a glass sealant for solid oxide fuel cell, J. Power Sources, 195, (2010), 3159-3165.

DOI: 10.1016/j.jpowsour.2009.12.008

Google Scholar

[45] S. Suda, M. Matsumiya, K. Kawahara, and K. Jono, Thermal cycle reliability of glass/ceramic composite gas sealing materials, Int. J. Appl. Ceram. Technol., 7, (2010), 49-54.

DOI: 10.1111/j.1744-7402.2009.02450.x

Google Scholar

[46] T. Jin, and K. Lu, Thermal stability of a new solid oxide fuel/electrolyzer cell seal glass, J. Power Sources, 195, (2010), 195-203.

DOI: 10.1016/j.jpowsour.2009.07.023

Google Scholar

[47] J. A. Fernie and W. B. Hanson, Best practice for producing ceramic-metal bonds, Industrial Ceramics, 19, (1999), 172-175.

Google Scholar