[1]
I. W. Donald, Glass-to-Metal Seals, Society of Glass Technology, (Sheffield), (2007).
Google Scholar
[2]
P. W. McMillan, B. P. Hodgson, Making glass-ceramic to metal seals, Engineering, 196, (1963), 366-377.
Google Scholar
[3]
I. W. Donald, Review: Preparation, properties and chemistry of glass- and glass-ceramic-to- metal seals and coatings, J. Mat. Sci., 28, (1993), 2841-2886.
DOI: 10.1007/bf00354689
Google Scholar
[4]
I. W. Donald, B. L. Metcalfe, L. A. Gerrard, and S. K. Fong, Diffusion of metallic species and their influence on interfacial reactions in glass-ceramic-to-metal seals, Adv. Sci. & Tech., 45, (2006), 1520-1525.
Google Scholar
[5]
I. W. Donald, B. L. Metcalfe, and L. A. Gerrard, Interfacial reactions in glass-ceramic-to- metal seals, J. Amer. Ceram. Soc., 91, (2008), 715-720.
DOI: 10.1111/j.1551-2916.2007.02024.x
Google Scholar
[6]
L. D. Haws, D. P. Kramer, W. E. Moddeman, and G. W. Wooten, High strength glass- ceramic-to-metal seals, Technical Report MLM-3288(OP), Dec. (1985).
DOI: 10.2172/6910209
Google Scholar
[7]
F. Hong, and D. Holland, Bonding glass ceramics to high temperature alloys, Surface & Coating Tech., 39/40, (1989), 19-27.
DOI: 10.1016/0257-8972(89)90037-6
Google Scholar
[8]
F. Hong, and D. Holland, Studies of interface reactions between glass ceramic coatings and metals, J. Non-Cryst. Solids, 112, (1989), 357-363.
DOI: 10.1016/0022-3093(89)90553-x
Google Scholar
[9]
J. W. Fergus, Review: Sealants for solid oxide fuel cells, J. Power Sources, 147, (2005), 46- 57.
DOI: 10.1016/j.jpowsour.2005.05.002
Google Scholar
[10]
S. T. Reis, and R. K. Brow, Designing sealing glasses for solid oxide fuel cells, J. Mater. Eng and Performance, 15, (2006), 410-413.
DOI: 10.1361/105994906x117206
Google Scholar
[11]
R. N. Singh, Sealing technology for solid oxide fuel cells (SOFC), Int. J. Appl. Ceram. Technol., 4, (2007), 134-144.
Google Scholar
[12]
M. K. Mahapatra, and K. Lu, Glass-based seals for solid oxide fuel and electrolyzer cells - A review, Mater. Sci. Eng. R., 67, (2010), 65-85.
DOI: 10.1016/j.mser.2009.12.002
Google Scholar
[13]
J. Pascual, A. Guillet, and A. Durán, Optimization of glass-ceramic sealant compositions in the system MgO-BaO-SiO2 for solid oxide fuel cells (SOFC), J. Power Sources, 169, (2007), 40-46.
DOI: 10.1016/j.jpowsour.2007.01.040
Google Scholar
[14]
R. Wang, Z. Lu, C. Liu, R. Zhu, X. Huang, B. Wei, N. Ai, and W. Su, Characteristics of a SiO2-B2O3-Al2O3-BaCO3-PbO2-ZnO glass-ceramic sealant for SOFCs, Jnl. Alloys and Compounds, 423, (2007), 189-193.
DOI: 10.1016/j.jallcom.2006.05.105
Google Scholar
[15]
P. Jinhua, S. Kening, Z. Naiqing, and C. Xinbing, Sealing glass of barium-calcium- aluminosilicate system for solid oxide fuel cells, J. Rare Earths, 25, (2007), 434-438.
DOI: 10.1016/s1002-0721(07)60451-7
Google Scholar
[16]
A. Goel, D. U. Tulyaganov, V. V. Kharton, A. A. Yaremchenko, and J. M. F. Ferreira, The effect of Cr2O3 addition on crystallization and properties of La2O3-containing diopside glass- ceramics, Acta Materialia, 56, (2008), 3065-3076.
DOI: 10.1016/j.actamat.2008.02.036
Google Scholar
[17]
S. Ghosh, A. Das Sharma, P. Kundu, S. Mahanty, and R. N. Basu, Development and characterization of BaO-CaO-Al2O3-SiO2 glass-ceramic sealants for intermediate temperature solid oxide fuel cell application, J. Non-Cryst. Solids, 354, (2008).
DOI: 10.1016/j.jnoncrysol.2008.05.036
Google Scholar
[18]
K. D. Meinhardt, D-S. Kim, Y-S, Chou, and K. S. Weil, Synthesis and properties of a barium aluminosilicate solid oxide fuel cell glass-ceramic seal, J. Power Sources, 182, (2008), 188- 196.
DOI: 10.1016/j.jpowsour.2008.03.079
Google Scholar
[19]
E. V. Stephens, J. S. Vetrano, B. J. Koeppel, Y. Chou, X. Sun, and M. A. Khaleel, Experimental characterization of glass-ceramic seal properties and their constitutive implementation in solid oxide fuel cell stack models, J. Power Sources, 193, (2009).
DOI: 10.1016/j.jpowsour.2009.02.080
Google Scholar
[20]
A. Goel, D. U. Tulyaganov, V. V. Kharton, A. A. Yaremchenko, S. Eriksson, and J. M. F. Ferreira, Optimzation of La2O3-containing diopside based glass-ceramic sealants for fuel cell applications, J. Power Sources, 189, (2009), 1032-1043.
DOI: 10.1016/j.jpowsour.2009.01.013
Google Scholar
[21]
S-F. Wang, Y-R. Wang, Y-F. Hsu, and C-C. Chuang, Effect of additives on the thermal properties and sealing characteristic of BaO-Al2O3-B2O3-SiO2 glass-ceramic for solid oxide fuel cell application, Int. J. Hydrogen Energy, 34, (2009).
DOI: 10.1016/j.ijhydene.2009.07.094
Google Scholar
[22]
S. Ghosh, A. D. Sharma, A. K. Mukhopadhyay, P. Kundu, and R. N. Basu, Effect of BaO addition on magnesium lanthanum alumino borosilicate-based glass-ceramic sealant for anode-supported solid oxide fuel cell, Int. J. Hydrogen Energy, 35, (2010).
DOI: 10.1016/j.ijhydene.2009.10.006
Google Scholar
[23]
T. Sun, H. Xiao, W. Guo, and X. Hong, Effect of Al2O3 content on BaO-Al2O3-B2O3-SiO2 glass sealant for solid oxide fuel cell, Ceram. Int., 36, (2010), 821-826.
DOI: 10.1016/j.ceramint.2009.09.045
Google Scholar
[24]
S. Sakuragi, Y. Funahashi, T. Suzuki, Y. Fujishiro, and M. Awano, J. Power Sources, 185, (2008), 1311-1314.
DOI: 10.1016/j.jpowsour.2008.08.081
Google Scholar
[25]
F. Smeacetto, M. Salvo, M. Ferraris, J. Cho., and A. R. Boccaccini, Glass-ceramic seal to join Crofer 22 APU alloy to YSZ ceramic in planar SOFCs, J. Europ. Ceram. Soc., 28, (2008), 61- 68.
DOI: 10.1016/j.jeurceramsoc.2007.05.006
Google Scholar
[26]
F. Smeacetto, M. Salvo, M. Ferraris, V. Casalegno, P. Asinari, and A. Chrysanthou, Characterization and performance of glass-ceramic sealant to join metallic interconnects to YSZ and anode-supported electrolyte in planar SOFs, J. Europ. Ceram. Soc., 28, (2008).
DOI: 10.1016/j.jeurceramsoc.2008.03.035
Google Scholar
[27]
V. Kumar, A. Arora, O. P. Pandey, and K. Singh, Studies on thermal and structural properties of glasses as sealants for solid oxide fuel cells, Int. J. Hydrogen Energy, 33, (2008), 434-438.
DOI: 10.1016/j.ijhydene.2007.07.049
Google Scholar
[28]
F. Smeacetto, A. Chrysanthou, M. Salvo, Z. Zhang, and M. Ferraris, Performance and testing of glass-ceramic sealant used to join anode-supported-electrolyte to Crofer22APU in planar solid oxide fuel cells, J. Power Sources, 190, (2009).
DOI: 10.1016/j.jpowsour.2009.01.042
Google Scholar
[29]
A. Goel, D. U. Tulyaganov, V. V. Kharton, A. A. Yaremchenko, and J. M. F. Ferreira, Electrical behavior of aluminosilicate glass-ceramic sealants and their interaction with metallic solid oxide fuel cell interconnects, J. Power Sources, 195, (2010).
DOI: 10.1016/j.jpowsour.2009.08.007
Google Scholar
[30]
F. Smeacetto, M. Salvo, F. D. D'Hérin Bytner, P. Leone, and M. Ferraris, New glass and glass-ceramic sealants for planar solid oxide fuel cells, J. Europ. Ceram. Soc., 30, (2010), 933- 940.
DOI: 10.1016/j.jeurceramsoc.2009.09.033
Google Scholar
[31]
N. Laorodphan, P. Namwong, W. Thiemsorn, M. Jaimasith, A. Wannagon, and T. Chairuangsri, A low silica, barium borate glass-ceramic for use as seals in planar SOFCs, J. Non-Cryst. Solids, 355, (2009), 38-44.
DOI: 10.1016/j.jnoncrysol.2008.07.044
Google Scholar
[32]
Z. Yang, J. W. Stevenson, and K. D. Meinhardt, Chemical interactions of barium-calcium aluminosilicate-based sealing glasses with oxidation resistant alloys, Solid State Ionics, 160, (2003), 213-225.
DOI: 10.1016/s0167-2738(03)00160-7
Google Scholar
[33]
H. Tu, and U. Stimming, Advances, aging mechanisms and lifetime in solid-oxide fuel cells, J. Power Sources, 127, (2004), 284-293.
DOI: 10.1016/j.jpowsour.2003.09.025
Google Scholar
[34]
V. A. C. Haanappel, V. Shemet, S. M. Gross, Th. Koppitz, N. H. Menzler, M. Zahid, and W. J. Quadakkers, Behaviour of various glass-ceramic sealants with ferritic steels under simulated SOFC stack conditions, J. Power Sources, 150, (2005).
DOI: 10.1016/j.jpowsour.2005.02.015
Google Scholar
[35]
N. H. Menzler, D. Sebold, M. Zahid, S. M. Gross, and T. Koppitz, Interaction of metallic SOFC interconnect materials with glass-ceramic sealant in various atmospheres, J. Power Sources, 152, (2005), 156-167.
DOI: 10.1016/j.jpowsour.2005.02.072
Google Scholar
[36]
P. Batfalsky, V. A. C. Haanappel, J. Malzbender, N. H. Menzler, V. Shemet, I. C. Vinke, and R. W. Stenbrech, Chemical interaction between glass-ceramic sealants and interconnect steels in SOFC stacks, J. Power Sources, 155, (2006), 128-137.
DOI: 10.1016/j.jpowsour.2005.05.046
Google Scholar
[37]
W. Liu, X. Sun, and M. A. Khaleel, Predicting Young's modulus of glass/ceramic sealant for solid oxide fuel cell considering the combined effects of aging, micro-voids and self-healing, J. Power Sources, 185, (2008), 1193-1200.
DOI: 10.1016/j.jpowsour.2008.07.017
Google Scholar
[38]
Y-S. Chou, J. W. Stevenson, and P. Singh, Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect, J. Power Sources, 184, (2008).
DOI: 10.1016/j.jpowsour.2008.06.020
Google Scholar
[39]
T. Zhang, Q. Zhu, and Z. Xie, Modeling of cracking of the glass-based seals for solid oxide fuel cell, J. Power Sources, 188, (2009), 177-183.
DOI: 10.1016/j.jpowsour.2008.11.053
Google Scholar
[40]
L. Peng, and Q. Zhu, Thermal cycle stability of BaO-B2O3-SiO2 sealing glass, J. Power Sources, 194, (2009), 880-885.
DOI: 10.1016/j.jpowsour.2009.06.018
Google Scholar
[41]
J. Salem, and R. Tandon, Test method variability in slow crack growth properties of sealing glasses, Int. J. Fatigue, 32, (2010), 557-564.
DOI: 10.1016/j.ijfatigue.2009.07.018
Google Scholar
[42]
W. N. Liu, X. Sun, B. Koeppel, and M. Khaleel, Experimental study of the aging and self- healing of the glass/ceramic sealant used in SOFCs, Int. J. Appl. Ceram. Technol., 7, (2010), 22-29.
DOI: 10.1111/j.1744-7402.2009.02417.x
Google Scholar
[43]
J. Milhans, M. Khaleel, X. Sun, M. Tehrani, M. Al-Haik, and H. Armestani, Creep properties of solid oxide fuel cell glass-ceramic seal G18, J. Power Sources, 195, (2010), 3631-3635.
DOI: 10.1016/j.jpowsour.2009.12.038
Google Scholar
[44]
H-T. Chang, C-K, Lin and C-K. Liu, Effects of crystallization on the high-temperature mechanical properties of a glass sealant for solid oxide fuel cell, J. Power Sources, 195, (2010), 3159-3165.
DOI: 10.1016/j.jpowsour.2009.12.008
Google Scholar
[45]
S. Suda, M. Matsumiya, K. Kawahara, and K. Jono, Thermal cycle reliability of glass/ceramic composite gas sealing materials, Int. J. Appl. Ceram. Technol., 7, (2010), 49-54.
DOI: 10.1111/j.1744-7402.2009.02450.x
Google Scholar
[46]
T. Jin, and K. Lu, Thermal stability of a new solid oxide fuel/electrolyzer cell seal glass, J. Power Sources, 195, (2010), 195-203.
DOI: 10.1016/j.jpowsour.2009.07.023
Google Scholar
[47]
J. A. Fernie and W. B. Hanson, Best practice for producing ceramic-metal bonds, Industrial Ceramics, 19, (1999), 172-175.
Google Scholar