Simple and Binary Hydrogen Clathrate Hydrates: Synthesis and Microscopic Characterization through Neutron and Raman Scattering

Article Preview

Abstract:

The search for efficient hydrogen-storage materials has led to an increasing interest in hydrogen clathrate hydrates, since it has been demonstrated that an appreciable amount of molecular hydrogen can be stored in the water cages and released at melting. Different synthetic routes have been followed to maximize the quantity of trapped hydrogen and to speed up the kinetics of the clathrate formation. Here, we describe two different synthetic routes for the production of hydrogen clathrate hydrates. Then we present the results of inelastic neutron scattering and Raman light scattering experiments on simple (i.e. containing only hydrogen) and binary (i.e. with a second guest molecule) clathrates. For each class of compounds, we have obtained spectroscopic information on the motion of hydrogen inside the cages, on the occupancy of the cages by hydrogens, and on lattice dynamics. Finally, we have investigated the clathrate crystal stability and the hydrogen release as a function of temperature by means of neutron diffraction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

196-204

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.D. Sloan: Clathrate Hydrates of Natural gases (Dekker, New York, 1997).

Google Scholar

[2] Y.A. Dyadin, E.G. Larionov, A.Y. Manakov, F.V. Zhurko, E.Y. Aladko, T.V. Mikina and V.Y. Komarov: Mendeleev Commun. Vol. 9 (1999), p.209.

DOI: 10.1070/mc1999v009n05abeh001104

Google Scholar

[3] W.L. Mao, H.K. Mao, A.F. Goncharov, V.V. Struzhkin, Q. Guo, J. Hu, J. Shu, R.J. Hemley, M. Somayazulu and Y. Zhao: Science Vol. 297 (2002), p.2247.

DOI: 10.1126/science.1075394

Google Scholar

[4] L.J. Florusse, C.J. Peters, J. Schoonman, K.C. Hester, C.A. Koh, S.F. Dec, K.N. Marsh and E.D. Sloan: Science Vol. 306 (2004), p.469.

DOI: 10.1126/science.1102076

Google Scholar

[5] H. Lee, J.W. Lee, D.Y. Kim, J. Park, Y. -T. Seo, H. Zeng, I.L. Moudrakovski, C.I. Ratcliffe and J.A. Ripmeester: Nature Vol. 434 (2005), p.743.

DOI: 10.1038/nature03457

Google Scholar

[6] K.A. Lokshin and Y. Zhao: Appl. Phys. Lett. Vol. 88 (2006), p.131909.

Google Scholar

[7] T.C.W. Mak and R.K. McMullan: J. Chem. Phys. Vol. 42 (1965), p.2732.

Google Scholar

[8] K.C. Hester, T.A. Strobel, E.D. Sloan and C.A. Koh: J. Phys. Chem. B Lett. Vol. 110 (2006), p.14024.

Google Scholar

[9] T.A. Strobel, C.J. Taylor, K.C. Hester, S.F. Dec, C.A. Koh, K.T. Miller and E.D. Sloan: J. Phys. Chem. B Vol. 110 (2006), p.17121.

Google Scholar

[10] K.A. Lokshin, Y. Zhao, D. He, W.L. Mao, H.K. Mao, R.J. Hemley, M.V. Lobanov and M. Greenblatt: Phys. Rev. Lett. Vol. 93 (2004), p.125503.

Google Scholar

[11] A. Giannasi, M. Celli, L. Ulivi and M. Zoppi: J. Chem. Phys. Vol. 129 (2008), p.084705.

Google Scholar

[12] L. Ulivi, M. Celli, A. Giannasi, A.J. Ramirez-Cuesta, D.J. Bull and M. Zoppi: Phys. Rev. B Vol. 76 (2007), p.161401.

DOI: 10.1103/physrevb.76.161401

Google Scholar

[13] M. Xu, Y.S. Elmatad, F. Sebastianelli, J.W. Moskovitz and Z. Bacic: J. Phys. Chem. B Vol. 110 (2006), p.24806. M. Xu, F. Sebastianelli and Z. Bacic: J. Phys. Chem. A Vol. 111 (2007), p.12763.

Google Scholar

[14] M. Xu, F. Sebastianelli, and Z. Bacic: J. Chem. Phys. Vol. 128 (2008), p.244715.

Google Scholar

[15] L. Ulivi, M. Celli, A. Giannasi, A.J. Ramirez-Cuesta and M. Zoppi: J. Phys. Condens. Matter Vol. 20 (2008), p.104242.

DOI: 10.1088/0953-8984/20/10/104242

Google Scholar

[16] S. Alavi, J. Ripmeester and D.D. Klug: J. Chem. Phys. Vol. 124 (2006), p.204707.

Google Scholar

[17] T.A. Strobel, C.A. Koh and D. Sloan: J. Phys. Chem. B Lett. Vol. 112 (2008), p.1885.

Google Scholar

[18] A.R.C. Duarte, A. Shariati, L.J. Rovetto and C.J. Peters: J. Phys. Chem. B Lett. Vol. 112 (2008), p.1888.

Google Scholar

[19] S. Alavi and J.A. Ripmeester: Angew. Chem. Int. Ed. Vol. 46 (2007), pag. 6102. Also, corrigendum: Angew. Chem. Int. Ed. Vol. 46 (2007), pag. 8921.

DOI: 10.1002/anie.200700250

Google Scholar

[20] L. Senadheera and M.S. Conradi: J. Phys. Chem. B Vol. 112 (2008), pag. 13695.

Google Scholar