Thermodynamic Database for Hydrogen Storage Materials

Article Preview

Abstract:

In order to be used for applications, the thermodynamic stability of a candidate hydrogen storage material should be suitable for hydrogen sorption at room conditions. By mixing different hydrides, it is possible to promote the hydrogenation/dehydrogenation processes. On the other hand, small changes in composition allow a tailoring of thermodynamic stability of hydrides. Knowledge of thermodynamic stability of hydrides is thus fundamental to study the hydrogenation/dehydrogenation processes and useful to rationalize synthesis reactions and to suggest possible alternative reaction routes. The purpose of this work is to develop a consistent thermodynamic database for hydrogen storage systems by the CALPHAD approach. Experimental data have been collected from the literature. When experimental measurements were scarce or completely lacking, estimations of the energy of formation of hydrides have been obtained by ab initio calculations performed with the CRYSTAL code. Several systems of interest for hydrogen storage have been investigated, including metallic hydrides (M-H) and complex hydrides. The effect on thermodynamic properties of fluorine-to-hydrogen substitution in some simple hydrides is also considered. Calculated and experimental thermodynamic properties of various hydrides have been compared and a satisfactory agreement has been achieved.

You might also be interested in these eBooks

Info:

[1] A. Züttel: Naturwissenschaften Vol. 91 (2004), p.157.

Google Scholar

[2] B. Sundman, S.G. Fries and H.L. Lukas: Computational Thermodynamics (Cambridge 2007 ).

Google Scholar

[3] P.E.A. Turchi, I.A. Abrikosov, B. Burton, S.G. Fries, G. Grimvall, L. Kaufman, P. Korzhavyi, V.R. Manga, M. Ohno, A. Pisch, A. Scott and W. Zhang: CALPHAD Vol. 31 (2007), p.4.

DOI: 10.1016/j.calphad.2006.02.009

Google Scholar

[4] J. Urgnani, F.J. Torres, M. Palumbo and M. Baricco: Int. J. Hydr. Energy Vol. 33 (2008), p.3111.

Google Scholar

[5] M. Zinkevich, N. Mattern, A. Handstein and O. Gutfleisch: J. Alloys Compd Vol. 339 (2002), p.118.

Google Scholar

[6] A.T. Dinsdale: CALPHAD Vol. 15 (1991), p.317.

Google Scholar

[7] M.W. Chase Jr., NIST-JANAF Thermochemical Tables, fourth ed., J. Phys. Chem. Ref. Data Monograph No. 9.

Google Scholar

[8] R. Dovesi, V. R. Saunders, C. Roetti, R Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, P. D'Arco, M. Llunell, CRYSTAL2006 User's Manual; http: /www. crystal. unito. it, University of Torino: Torino, (2006).

Google Scholar

[9] R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V.R. Saunders and C.M. Zicovich-Wilson: Z.  Kristallogr. Vol. 220 (2005), p.571.

DOI: 10.1524/zkri.220.5.571.65065

Google Scholar

[10] C. Qiu, G.B. Olson, S.M. Opalka and D.L. Anton: Int. J. Mat. Res. Vol. 97 (2006), p.845.

Google Scholar

[11] A.D. Pelton: Z. Melallkde. Vol. 84 (1993), p.767.

Google Scholar

[12] K. Zeng, T. Klassen, W. Oelerich and R. Bormann: Int. J. Hydrogen Energy Vol. 24 (1999), p.989.

Google Scholar

[13] C. Qiu, G.B. Olson, S.M. Opalka and D.L. Anton: J. Phase Equilib. Diff. Vol. 25 (2004), p.520.

Google Scholar

[14] W. Huang, S.M. Opalka, D. Wang and T.B. Flanagan: CALPHAD Vol. 31 (2007), p.315.

Google Scholar

[15] E. Konigsberger , G. Eriksson and W.A. Oates: JALCOM Vol. 299 (2000), p.148.

Google Scholar

[16] J. -M Joubert and S. Thiébaut: Journal of Nuclear Materials Vol. 395 (2009), p.79.

Google Scholar

[17] M. Palumbo, J. Urgnani, D. Baldissin, L. Battezzati and M. Baricco: CALPHAD Vol. 33 (2009), p.162.

DOI: 10.1016/j.calphad.2008.09.003

Google Scholar

[18] K. Zeng, T. Klassen, W. Oelerich and R. Bormann: JALCOM Vol. 299 (1999), p.213.

Google Scholar

[19] B. -M. Lee, J. -W. Jang, J. -H. Shimb, Y.W. Cho and B. -J. Lee: JALCOM Vol. 424 (2006), p.370.

Google Scholar

[20] J. -W. Jang, J. -H. Shimb, Y. W. Cho and B. -J. Lee: JALCOM Vol. 420 (2006), p.286.

Google Scholar

[21] M. Palumbo, F.J. Torres, J.R. Ares, C. Pisani, J.F. Fernandez and M. Baricco, CALPHAD Vol. 31 (2007), p.457.

DOI: 10.1016/j.calphad.2007.04.005

Google Scholar

[22] J. Vajo, S.L. Skeith and F. Mertens: J Phys. Chem. B Lett. Vol. 109 (2005), p.3719.

Google Scholar

[23] D. Pottmaier, E. Groppo, S. Bordiga, G. Spoto and M. Baricco: Proc. HYSYDAYS 2009, Turin, Italy, Oct. (2009).

Google Scholar

[24] K. Ikeda, S. Kato, Y. Shinzato, N. Okuda, Y. Nakamori, A. Kitano, H. Yukawa, M. Morinaga and S. Orimo: Journal of Alloys and Compounds Vol. 446–447 (2007), p.162.

DOI: 10.1016/j.jallcom.2007.03.093

Google Scholar

[25] P. Wang, X.D. Kang and H.M. Cheng: ChemPhysChem Vol. 6 (2005), p.2488.

Google Scholar

[26] L. Yin, P. Wang, X. Kang, C. Sun and H. Cheng: Phys. Chem. Chem. Phys. Vol. 9 (2007), p.1499.

Google Scholar

[27] J.J. Vajo and G.L. Olson : Scripta Mat. Vol. 56 (2007), p.829.

Google Scholar

[28] J.J. Vajo, T.T. Salguero, A.F. Gross, S.L. Skeith and G.L. Olson, J. All. Comp. Vol. 446–447 (2007) p.409.

Google Scholar

[29] A. Meyer, P. D'Arco, R. Orlando and R. Dovesi: J. Phys. Chem. C Vol. 113(2009), p.14507.

Google Scholar