Numerical Simulation of Hydrogen Dynamics at a Mg-MgH2 Interface

Article Preview

Abstract:

Hydrogen desorption from hydride matrix is still an open field of research. Extensive abinitio molecular dynamics simulations are performed to characterize the desorption process at the interface MgH2-Mg. The numerical model succesfully repoduces the experimental desorption temperature for the hydride with and without Fe catalyst. Formation energies and work of adhesion are computed and linked to the desorption mechanism. Moreover a detailed analysis of the structural data reveals the role played by the catalysts in the lowering the desorption temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

205-212

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. ~ Schlapbach, A. ~ Zuttel:, Nature~{\bf Vol. 414 (2001)}, pp.353-358 (2001). \bibitem{berube}.

Google Scholar

[2] V. ~ B\eérubé\, e, G. ~ Radtke, M. ~ Dresselhaus, G. ~ Chen:, Int. ~ J. ~ Energy~ Res. ~ Vol. {\bf 31 (2007)}, p.637 (2007). \bibitem{huot}.

Google Scholar

[3] J. ~ Huot, G. Liang, S. Boily, A. ~ Van~ Neste, R. ~ Schulz:, J. ~ Alloy Compd~ Vol. {\bf 293-295 (1999)}, p.495 (1999).

Google Scholar

[4] bibitem{hanada} N. ~ Hanada, T. ~ Ichikawa, S. ~I. ~ Orimo, H. ~ Fujii:, J. ~Alloys ~Compd. ~{\bf Vol. 366 (2004)}, p.269 (2004). \bibitem{vittori2}.

Google Scholar

[5] M. ~ Vittori~ Antisari, A. ~ Aurora, D. ~ Mirabile~ Gattia, A. ~ Montone:, Scripta Mat. Vol. {\bf 61 (2009)}, p.1064 (2009). \bibitem{2}.

DOI: 10.1016/j.scriptamat.2009.08.030

Google Scholar

[6] B. ~ Sakintuma, F. ~ Lamary-Darkrim, M. ~ Hirscher:, Int. ~ J. ~ of Hydrogen Energy~{\bf Vol. 32 (2007)}, p.1121 (2007). \bibitem{shang}.

Google Scholar

[7] C. X. Shang, M. Bououdina, Y. Song, Z. X. Guo:, Int. ~ J. ~ of Hydrogen Energy~ Vol. {\bf 29 (2007)}, p.73 (2007).

Google Scholar

[8] \bibitem{vittori} M. ~Vittori~ Antisari, A. ~ Montone, A. ~ Aurora, M. ~ R. ~ Mancini, D. ~ Mirabile~ Gattia, L. ~ Pilloni:, Intermetallics Vol. {\bf 17 (2009)}, p.596 (2009).

DOI: 10.1016/j.intermet.2009.01.014

Google Scholar

[9] \bibitem{pasquini} L. ~Pasquini, E. ~ Callini, E. ~ Piscopiello, A. ~ Montone, M. ~ Vittori~ Antisari, E. ~ Bonetti:, Appl. ~ Phys. ~Lett. Vol. {\bf 94 (2009)}, p.041918 (2009). \bibitem{larsson}.

DOI: 10.1063/1.3077186

Google Scholar

[10] P. ~Larsson, C. ~ M. ~ Arau\'jo, J. ~ A. ~ Larsson, P. ~ Jena, R. ~ Ahuja:, PNAS~{\bf Vol. 105}, (2008), p.8227 (2008).

Google Scholar

[11] bibitem{tsuda} M. ~Tsuda, W. ~ A. ~ Di\~{n}ño, H. ~ Kasai, H. ~ Nakanishi:, Appl. ~ Phys. ~ Lett. Vol. {\bf 86 (2005)}, p.213109 (2005).

DOI: 10.1063/1.1931045

Google Scholar

[12] bibitem{hao} S. ~ Hao, D. ~ S. ~ Sholl:, Appl. ~ Phys. ~ Lett. Vol. {\bf 93 (2008)}, p.251901 (2008).

Google Scholar

[13] bibitem{cpmd} CPMD, www. cpmd. org, Copyright IBM Corp. 1990-2008, Copyright MPI fȕ{\u}r Festkö{\, o}rperforshung Stuttgart 1997--(2001).

Google Scholar

[14] bibitem{goed} S. ~ Goedecker, M. ~ Teter, J. ~ Hutter:, Phys. ~ Rev. ~ B Vol. {\bf 54}, (1996), p.1703 (1996).

Google Scholar

[15] J.F. Pelletier, J. Huot, M. Sutton, R. Schulz, A.R. Sandy, L.B. Lurio, S.G.J. Mochrie: Phys. Rev. B Vol. 63 (2001), p.052103.

Google Scholar

[156] \bibitem{higuchi} K. Higuchi, K. ~ Yamamoto, H. ~ Kajioka, K. ~ Toiyama, M. ~ Honda, S. ~ Orimo, H. ~ Fujii:, J. ~Alloys. ~Comp. Vol. {\bf 330-332 (2002)}, p.526 (2002).

DOI: 10.1016/s0925-8388(01)01542-0

Google Scholar

[16] : Vol. (2001)p. \bibitem{kelekar}.

Google Scholar

[17] R. ~ Kelekar, H. ~ Giffard, S. ~T. ~ Kelly, B. ~M. ~ Clemens:, J. ~ Appl. ~ Phys. ~ Vol. {\bf 101} (2007), p., 114311 (2007).

Google Scholar

[18] S. Nosé: J. Chem. Phys. Vol. 81 (1984), p.511; Mol. Phys. Vol. 52 (1984), p.255. W.G. Hoover: Phys. Rev. A Vol. 31, (1985) p.1965. H.

Google Scholar

[1] Dj.M. Maric, P.F. Meier and S.K. Estreicher: Mater. Sci. Forum Vol. 83-87 (1992), p.119.

Google Scholar

[2] M.A. Green: High Efficiency Silicon Solar Cells (Trans Tech Publications, Switzerland 1987).

Google Scholar

[3] Y. Mishing, in: Diffusion Processes in Advanced Technological Materials, edtied by D. Gupta Noyes Publications/William Andrew Publising, Norwich, NY (2004), in press.

Google Scholar

[4] G. Henkelman, G. Johannesson and H. Jónsson, in: Theoretical Methods in Condencsed Phase Chemistry, edited by S.D. Schwartz, volume 5 of Progress in Theoretical Chemistry and Physics, chapter, 10, Kluwer Academic Publishers (2000).

Google Scholar

[5] R.J. Ong, J.T. Dawley and P.G. Clem: submitted to Journal of Materials Research (2003).

Google Scholar

[6] P.G. Clem, M. Rodriguez, J.A. Voigt and C.S. Ashley, U.S. Patent 6, 231, 666. (2001).

Google Scholar

[7] Information on http: /www. weld. labs. gov. cn.

Google Scholar