A Novel Anode Based on Ni-Modified Perovskite for Direct Alcohol Solid Oxide Fuel Cells

Article Preview

Abstract:

A Ni-modified La0.6Sr0.4Fe0.8Co0.2O3 / Ce0.9Gd0.1O2 catalyst was prepared by incipient wetness. The product thus obtained was calcined at 1100°C for 2 h in static air. After thermal activation, Ni was mainly present as highly dispersed La2NiO4 on the surface of perovskite surface. The thermal reduction at 800 °C caused the occurrence of metallic Ni on the surface. Surface area was determined by BET measurement. The catalyst was used as anode in IT-SOFCs fed with methanol. Studies under steam reforming, partial oxidation and autothermal reforming of methanol were carried out at 800°C. A comparison was made between the performance of SOFCs fed with syngas or methanol. The results with methanol are promising both in terms of energy density as well as suitable performance for portable power sources.

You might also be interested in these eBooks

Info:

[1] S.C. Singhal: Solid State Ionics (2000), p.135.

Google Scholar

[2] O. Yamamoto: Electrochim Acta Vol. 45 (2000), p.2423.

Google Scholar

[3] E. Bompard, R. Napoli, G. Orsello, D. Roiu, A. Tenconi and B. Wan: International Journal of Hydrogen Energy Vol. 33 (2008), p.6743.

DOI: 10.1016/j.ijhydene.2008.05.109

Google Scholar

[4] M. Dokiya: Solid State Ionics Vol. 152– 153 (2002), p.383.

Google Scholar

[5] A. B. Stambouli and E. Traversa: Renewable and Sustainable Energy Reviews Vol. 6 (2002), p.433.

Google Scholar

[6] G. Cacciola, V. Antonucci and S. Freni: Journal of Power Sources Vol. 100 (2001), p.67.

Google Scholar

[7] S.C. Singhal: Solid State Ionics Vol. 152 (2002), p.405.

Google Scholar

[8] S. Park, J.M. Vohs and R.J. Gorte: Nature Vol. 404 (2000), 265.

Google Scholar

[9] K. Kendall, M. Slinn and J. Preece: Journal of Power Sources Vol. 157 (2006), p.750.

Google Scholar

[10] Z.F. Zhou, C. Gallo, M.B. Pague, H. Schobert and S.N. Lvov: Journal of Power Sources Vol. 133 (2004), p.181.

Google Scholar

[11] S. McIntosh and R.J. Gorte: Chemical Reviews Vol. 104 (2004), p.4845.

Google Scholar

[12] G. A. Olah: Catalysis Letters Vol. 93 (2004), p.1.

Google Scholar

[13] A. Cybulski: Catalalysis Reviews: Science and Engineering Vol. 36 (1994), p.557.

Google Scholar

[14] Kirk-Othmer: Encyclopedia of Chemical Technology, 4th Edition (1995).

Google Scholar

[15] Y. Jiang and A. V. Virkar: Journal of Electrochemical Society Vol. 148 (2001), p. A706.

Google Scholar

[16] G. J. Saunders, J. Preece and K. Kendall: Journal of Power Sources Vol. 131 (2004), p.23.

Google Scholar

[17] B. Feng, C. Y. Wang, and B. Zhu: Electrochemical and Solid-State Letters Vol. 9 (2006), p. A80.

Google Scholar

[18] Y.B. Lin, Z.L. Zhan, J. Liu, and S.A. Barnett: Solid State Ionics Vol. 176 (2005), p.1827.

Google Scholar

[19] K. Nikooyeh, R. Clemmer, V. Alzate-Restrepo, and J.M. Hill: Applied Catalysis A: General Vol. 347 (2008), p.106.

DOI: 10.1016/j.apcata.2008.06.005

Google Scholar

[20] H. Timmermann, W. Sawady, D. Campbell, A. Weber, R. Reimert, and E. Ivers-Tiffee: Journal of Electrochemical Society Vol. 155 (2008), p. B356.

DOI: 10.1149/1.2838909

Google Scholar

[21] D. La Rosa, A. Sin, M. Lo Faro, G. Monforte, V. Antonucci and A. S. Aricò: Journal of Power Sources Vol. 193 (2009), p.160.

Google Scholar

[22] N. M. Galea, D. Knapp and T. Ziegler: Journal of Catalysis Vol. 247 (2007), p.20.

Google Scholar

[23] M. Lo Faro, D. a La Rosa, I. Nicotera, V. Antonucci and A. S. Aricò: Applied Catalysis B: Environmental Vol. 89 (2009), p.49.

DOI: 10.1016/j.apcatb.2008.11.019

Google Scholar

[24] Y. H. Huang, R. I. Dass, Z. L. Xing, and J. B. Goodenough: Science Vol. 312 (2006), p.254.

Google Scholar

[25] M. P. Pechini, US Pat. No. 3, 330, 697 (1967).

Google Scholar

[26] M. Lo Faro, D. La Rosa, P. Frontera, P. Antonucci, V. Antonucci and A. S. Aricò: Catalysis Letters Vol. 136 (2010), p.57.

DOI: 10.1007/s10562-010-0295-2

Google Scholar

[27] M. Lo Faro, D. La Rosa, G. Monforte, V. Antonucci, A.S. Aricò and P. Antonucci: Journal of Applied Electrochemistry Vol. 37 (2007), p.203.

Google Scholar

[28] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska: Pure and Applied Chemistry Vol. 57 (1985), p.603.

DOI: 10.1002/9783527619474.ch11

Google Scholar

[29] M. R. Goldwasser, M. E. Rivas, M. L. Lugo, E. Pietri, J. Pérez-Zurita, M. L. Cubeiro, A. Griboval-Constant and G. Leclercq: Catalysis Today Vol. 107–108 (2005), p.106.

DOI: 10.1016/j.cattod.2005.07.073

Google Scholar

[30] L. Bedel, A. C. Roger, C. Estournes and A. Kiennemann: Catalysis Today Vol. 85 (2003), p.207.

DOI: 10.1016/s0920-5861(03)00388-2

Google Scholar

[31] Z. Zhan, J. Liu and S. A. Barnett: Applied Catalysis A: General Vol. 262 (2004), p.255.

Google Scholar

[32] N. V. Skorodumova, S. I. Simak, B. I. Lundqvist, I. A. Abrikosov and B. Johansson: Physical Review Letters Vol. 89 (2002), pp.166601-1.

Google Scholar

[33] J. W. Kim, A. V. Virkar, K. Z. Fung, K. Mehta and S.C. Singhal: Journal of Electrochemical Society Vol. 146 (1999), p.69.

Google Scholar

[34] G. Brunaccini, M. Lo Faro, D. La Rosa, V. Antonucci and A. S. Aricò: International Journal of Hydrogen Energy Vol. 33 ( 2008 ), p.3150.

DOI: 10.1016/j.ijhydene.2008.01.021

Google Scholar