Pt Alloys on Carbon Nanostructures as Electrocatalysts for Direct Methanol Fuel Cell

Article Preview

Abstract:

Extensive efforts are focused on the development of Direct Methanol Fuel Cells, due to the intrinsic advantages of this type of devices for mobile power supply system. One of the major drawback of the DMFC resides in the easy poisoning of the anode electrocatalyst (platinum) by COlike reaction intermediates, which implies the need of high platinum load in order to obtain reasonable performances. The development of platinum alloys is considered one of the promising routes for overcoming this problem: the second metal in fact acts as inhibitor of the Pt poisoning. In this work we have combined the use of unconventional methods to deposit the electrocatalyst nanoparticles with unconventional carbon supports. PtAu alloys have been deposited by sputter deposition process on carbon nanofibers with platelet morphology grown by plasma enhanced chemical vapour deposition on carbon paper. Cyclic voltammetry in H2SO4 was used to determine the electrochemical active surface and the electrocatalytic performance for methanol oxidation reaction. Even at lower Pt load, respect to the ones prepared with commercial catalysts supported on carbon black, the innovative electrodes showed higher performance and stability.

You might also be interested in these eBooks

Info:

[1] U. A. Icardi, S. Specchia, G. J. R. Fontana, G. Saracco, and V. Specchia, J. Power Sources, 176, 460, 2008].

DOI: 10.1016/j.jpowsour.2007.08.048

Google Scholar

[2] A.S. Arico, S. Srinivasan and V. Antonucci, Fuel Cells, 1, 133 (2001).

Google Scholar

[3] H. Liu, C. Songa, L. Zhang, J. Zhang, H. Wang, D.P. Wilkinson, J. Power Sources 155, 95 (2006).

Google Scholar

[4] N. Fujiwara, K. Yasuda, T. Ioroi, Z. Siroma, Y. Miyazaki, Electrochim. Acta 47, 4079 (2002).

Google Scholar

[5] N. Fujiwara, Y. Shiozaki, T. Tanimitsu, K. Yasuda, Y. Miyazaki, Electrochemistry 70, 988 (2002).

Google Scholar

[6] C.W. Hills, N.H. Mack, R.G. Nuzzo. J. Phys. Chem. B. 107, 2626 (2003).

Google Scholar

[67] A.J. Dickinson, L.P.L. Carrette, J.A. Collins, K.A. Friedrich, U. Stimming. Electrochim. Acta 47, 3733 (2002).

Google Scholar

[78] M. Neergat, D. Leveratto, U. Stimming. Fuel Cells 2, 25 (2002).

Google Scholar

[9] K.A. Friedrich, L.P. Geyzers, A.J. Dickinson, U. Stimming. J. Electroanal. Chem. 524-525, 261 (2002).

Google Scholar

[810] S.D. Thompson, L.R. Jordan, A.K. Shukla, M. Forsyth, J. Electroanal. Chem. 515, 61 (2001).

Google Scholar

[191] H. Kim, N.P. Subramanian, B.N. Popov, J. Power Sources 138, 14 (2004).

Google Scholar

[102] O. Antoine, R. Durand, J. Electrochem. Solid-State Lett. 4, A55 (2001).

Google Scholar

[113] S.D. Thompson, L.R. Jordan, M. Forsyth, Electrochim. Acta 46, 1657 (2001).

Google Scholar

[124] L. Giorgi, Th. Dikonimos Makris, R. Giorgi, N. Lisi, E. Salernitano, Sensors and Actuators, B Chemical 126, 144 (2007).

DOI: 10.1016/j.snb.2006.11.018

Google Scholar

[135] Paoletti C., Cemmi A., Giorgi L., Giorgi R., Pilloni L., Serra E., Pasquali M., 2008, Journal of Power Sources 183, p.84–91.

DOI: 10.1016/j.jpowsour.2008.04.083

Google Scholar

[146] L. Giorgi, E. Salernitano, S. Gagliardi, Th. Dikonimos, R. Giorgi, N. Lisi, F. De Riccardis, V. Martina J. Nanoscience and Nanotechnology, 2010, in press.

DOI: 10.1166/jnn.2011.3464

Google Scholar

[157] R. Giorgi, L. Giorgi, S. Gagliardi, E. Salernitano, M. Alvisi, Th. Dikonimos, N. Lisi, D. Valerini, M.F. De Riccardis, E. Serra, Journal of Fuel Cell Science and Technology, 2010, in press.

DOI: 10.1115/1.4003629

Google Scholar

[168] Alvisi M., Galtieri G., Giorgi L., Giorgi R., Serra E., Signore M.A., 2005, Surface & Coatings Technology, 200, p.1325–1329.

DOI: 10.1016/j.surfcoat.2005.07.093

Google Scholar

[179] L. Giorgi, R. Giorgi, S. Gagliardi, E. Serra, M. Alvisi, M.A. Signore, E. Piscopiello, J. Nanoscience and Nanotechnology, 2010, in press.

DOI: 10.1166/jnn.2011.3463

Google Scholar

[1820] Lee K., Zhang J., Wang H., Wilkinson D.P., 2006, J. Appl. Electrochem., 36, pp.507-522.

Google Scholar

[1921] Dai H., 2002, Surface Science 500, 218.

Google Scholar

[202] De Jong K.P., Geus J.W., 2000 Catal. Rev. Sci. Eng. 42, 481.

Google Scholar

[213] Z. Li, X. Cui, X. Zhang, Q. Wang, Y. Shao, Y. Lin, J. Nanosci. Nanotetch. 9, 2316 (2009).

Google Scholar

[224] Z.B. He, J.H. Chen, D.Y. Liu, H.H. Zhou and Y.F. Kuang, Diamond Relat. Mater., 13, 1764 (2004).

Google Scholar

[235] J.H. Zeng and J.Y. Lee, J. Power Sources, 140, 268 (2005).

Google Scholar

[246] A.C. Garcia, V.A. Paganin and E.A. Ticianelli, Electrochim. Acta, 53, 4309 (2008).

Google Scholar

[257] T. R. Ralph and M. P. Hogarth, Platinum Metals Rev., 46, 117 (2002).

Google Scholar

[268] Haruta M., 1997, Catalysis Today, 36, pp.153-166.

Google Scholar

[279] Th. Dikonimos Makris, R. Giorgi, N. Lisi, L. Pilloni and E. Salernitano, Fullerenes, Nanotubes, and Carbon Nanostructures 13 (suppl. 1), 383 (2005).

DOI: 10.1081/fst-200039380

Google Scholar

[2830] Th. Dikonimos Makris, R. Giorgi, N. Lisi, E. Salernitano, M.F. De Riccardis and D. Carbone, in Carbon Nanotubes edited V.N. Popov and P. Lambin, NATO Science Series, II. Mathematics, Physics and Chemistry, 57 (2006).

DOI: 10.1007/1-4020-4574-3_10

Google Scholar

[1] Dj.M. Maric, P.F. Meier and S.K. Estreicher: Mater. Sci. Forum Vol. 83-87 (1992), p.119.

Google Scholar

[2] M.A. Green: High Efficiency Silicon Solar Cells (Trans Tech Publications, Switzerland 1987).

Google Scholar

[3] Y. Mishing, in: Diffusion Processes in Advanced Technological Materials, edtied by D. Gupta Noyes Publications/William Andrew Publising, Norwich, NY (2004), in press.

Google Scholar

[4] G. Henkelman, G. Johannesson and H. Jónsson, in: Theoretical Methods in Condencsed Phase Chemistry, edited by S.D. Schwartz, volume 5 of Progress in Theoretical Chemistry and Physics, chapter, 10, Kluwer Academic Publishers (2000).

Google Scholar

[5] R.J. Ong, J.T. Dawley and P.G. Clem: submitted to Journal of Materials Research (2003).

Google Scholar

[6] P.G. Clem, M. Rodriguez, J.A. Voigt and C.S. Ashley, U.S. Patent 6, 231, 666. (2001).

Google Scholar

[7] Information on http: /www. weld. labs. gov. cn.

Google Scholar