Study of Carbon Nanotubes for Lithium-Ion Batteries Application

Abstract:

Article Preview

The potential use of multi-walled carbon nanotubes (MWCNTs) produced by chemical vapour deposition (CVD) as a conductive agent for electrodes in Li-ion batteries has been investigated. LiNi0.33Co0.33Mn0.33O2 (NCM) has been chosen as active material for positive electrodes, and a nano-sized TiO2-rutile for the negative electrodes. The electrochemical performances of the electrodes were studied by galvanostatic techniques and especially the influence of the nanotubes on the rate capability and cycling stability has been evaluated. The addition of MWCNTs significantly enhanced the rate performances of both positive and negative electrodes and improved the capacity retention upon cycling. The obtained results demonstrated that the addition of MWCNTs in low amounts to the electrode composition enables an increase in both energy and power density of a Li-ion battery.

Info:

Periodical:

Edited by:

Pietro VINCENZINI, Cynthia POWELL, Marco VITTORI ANTISARI, Vincenzo ANTONUCCI and Fausto CROCE

Pages:

299-304

DOI:

10.4028/www.scientific.net/AST.72.299

Citation:

A. Varzi et al., "Study of Carbon Nanotubes for Lithium-Ion Batteries Application ", Advances in Science and Technology, Vol. 72, pp. 299-304, 2010

Online since:

October 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.