A CFD Model of Erosion-Corrosion of Fe at Elevated Temperatures in Aqueous Environments

Article Preview

Abstract:

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-86

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. M., Stack, S., Lekatos, and F. H., Stott, Erosion-corrosion regimes: Number, nomenclature and justification?, Tribology International, 28(7), (1995), 445-451.

DOI: 10.1016/0301-679x(95)00009-s

Google Scholar

[2] F. H., Stott, M. P., Jordan, S., Lekatos, M. M., Stack, and G. C., Wood, The erosion-corrosion of alloys under oxidizing-sulfidizing conditions at high-temperature, Wear, 186(1), (1995), 291-298.

DOI: 10.1016/0043-1648(95)07149-0

Google Scholar

[3] M. M., Stack, and Bray, L., Interprtitation of wastage mechanisms of materials exposed to elevated-temperature erosion-corrosion using erosion-corrosion maps and computer-graphics, Wear, 186(1), (1995), 273-283.

DOI: 10.1016/0043-1648(95)07174-1

Google Scholar

[4] M. M. Stack, F. H. Stott, G. C. Wood, "Review of mechanisms of erosion-corrosion of alloys atelevated temperature, Wear 162, (1993), 706–712.

DOI: 10.1016/0043-1648(93)90070-3

Google Scholar

[5] H. C. Meng, K. C. Ludema, Wear models and predictive equations: their form and content, " Wear 181-183 (Part 2), (1995), 443–457.

DOI: 10.1016/0043-1648(95)90158-2

Google Scholar

[6] R. W. Lyczkowski, J. X. Bouillard, State-of-the-art review of erosion modeling in fluid/solidssystems, Progress in Energy and Combustion Science, 28 (6), (2002), 543–602.

DOI: 10.1016/s0360-1285(02)00022-9

Google Scholar

[7] H. Argeso, A. N. Eraslan, On the use of temperature-dependent physical properties in thermomechanicalcalculations for solid and hollow cylinders, International Journal of ThermalSciences 47, (2008), 136–146.

DOI: 10.1016/j.ijthermalsci.2007.01.029

Google Scholar

[8] D. J. O'Flynn, M. S. Bingley, M. S. A. Bradley, A. J. Burnett, "A model to predict the solidparticle erosion rate of metals and its assessment using heat-treated steels, Wear 248 (1-2), (2001), 162 – 177.

DOI: 10.1016/s0043-1648(00)00554-8

Google Scholar

[9] C., Davis, and P., Frawley, Modelling of erosion-corrosion in practical geometries, Corrosion Science, 51(4), (2009), 769-775.

DOI: 10.1016/j.corsci.2008.12.025

Google Scholar

[10] M. M, Stack, andF. H., Stott, An approach to modeling erosion-corrosion of alloys using erosion-corrosion maps, Corrosion Science, 35, (1993), 1027-1034.

DOI: 10.1016/0010-938x(93)90321-7

Google Scholar

[11] M. M,; Stack, N., Corlett, and S., Zhou, Construction of erosion-corrosion maps for erosion in aqueous slurries, Materials Science and Technology, 12, (1996), 662-672.

DOI: 10.1179/mst.1996.12.8.662

Google Scholar

[12] M. M., Stack, N., Corlett, andS., Turgoose, Some recent advances in the development of theoretical approaches for the construction of erosion-corrosion maps in aqueous conditions, Wear, 233, (1999), 535-541.

DOI: 10.1016/s0043-1648(99)00218-5

Google Scholar

[13] M. M., Stack, B. D., Jana, Modelling particulate erosion-corrosion in aqueous slurries: someviews on the construction of erosion-corrosion maps for a range of pure metals, Wear, 256 (9-10), (2004), 986–1004.

DOI: 10.1016/j.wear.2003.09.004

Google Scholar

[14] M. M., Stack, S. M., Abdelrahman, B. D., Jana, A new methodology for modelling erosion-corrosion regimeson real surfaces: Gliding down the galvanic series for a range of metal-corrosion systems, Wear, 268 (3-4), (2010), 533 – 542.

DOI: 10.1016/j.wear.2009.09.013

Google Scholar

[15] G. L. Sheldon, A., Kanhere, Investigation of impingement erosion using single particle, Wear, 21 (1), (1972), 195–209.

DOI: 10.1016/0043-1648(72)90257-8

Google Scholar

[16] K. M. Nho, Experimental investigation of heat flow rate and directional effect on contactconductance of anisotropic ground/lapped interfaces, Ph.D. thesis, University of Waterloo, Canada, (1990).

Google Scholar

[17] S. K. Das, K. M., Godiwalla, S., Shubha, S. P., Mehrotra, P. K., Dey, A mathematical modelto characterize effect of silica content in the boiler fly ash on erosion behaviour of boilergrade steel, Journal of Materials Processing Technology, 204 (1-3), (2008).

DOI: 10.1016/j.jmatprotec.2007.11.055

Google Scholar

[18] Y. Shida, H., Fujikawa, Particle erosion behavior of boiler tube materials at elevated temperature, Wear, 103 (4), (1985), 281–296.

DOI: 10.1016/0043-1648(85)90026-2

Google Scholar

[19] D. R. Lide (Ed. ), CRC Handbook of Chemistry and Physics, 87th Edition, Taylor and Francis, Boca Raton, FL, USA, (2007), Ch. Properties of Solids, Ch. 12, p.195, CD-ROM Version.

DOI: 10.1021/ja069813z

Google Scholar

[20] G. Sundararajan, A comprehensive model for the solid particle erosion of ductile materials, Wear, 149 (1-2), (1991), 111 – 127.

DOI: 10.1016/0043-1648(91)90368-5

Google Scholar

[21] A. Forder, M., Thew, D., Harrison, A numerical investigation of solid particle erosion experiencedwithin oilfield control valves, Wear, 216 (2), (1998), 184–193.

DOI: 10.1016/s0043-1648(97)00217-2

Google Scholar

[22] M. M., Stack, N., Corlett, and S., Zhou, Some thoughts on the effect of elastic rebounds on the boundaries of the aqueous erosion-corrosion map, Wear, 214 (2), (1998), 175–185.

DOI: 10.1016/s0043-1648(97)00243-3

Google Scholar

[23] Y., Orcan, A. N., Eraslan, Thermal stresses in elastic-plastic tubes with temperature-dependentmechanical and thermal properties, Journal of Thermal Stresses, 24 (11), (2001), 1097–1113.

DOI: 10.1080/01495730152620087

Google Scholar

[24] A. N. Eraslan, Y., Orcan, Computation of transient thermal stresses in elastic-plastic tubes: Effect of coupling and temperature-dependent physical properties, Journal of Thermal Stresses, 25 (6), (2002), 559-572.

DOI: 10.1080/01495730290074298

Google Scholar

[25] N. Noda, Thermal stresses in materials with temperature dependent properties, In: Proceedingsof the NATO Advanced Research Workshop on Thermal Shockand Thermal Fatigue Behaviourof Advanced Ceramics, Kluwer Academic, MA, USA, (1993), p.15–26.

DOI: 10.1007/978-94-015-8200-1_2

Google Scholar

[26] D. R. Lide, (Ed. ), CRC Handbook of Chemistry and Physics, 87th Edition, Taylor and Francis, Boca Raton, FL, USA, (2007), Ch. Fluid Properties, Ch. 6, p.2, CD-ROM Version.

DOI: 10.1021/ja069813z

Google Scholar

[27] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, Oxford, New York, (1966).

Google Scholar

[28] B. T. Lu, J. L., Luo, F., Mohammadi, K., Wang, X. M., Wan, Correlation between repassivationkinetics and corrosion rate over a passive surface in flowing slurry, ElectrochimicaActa, 53 (23), (2008), 7022–7031.

DOI: 10.1016/j.electacta.2008.02.083

Google Scholar

[29] FLUENT, Inc., FLUENT user's guide, Version 6. 3 (2006).

Google Scholar

[30] R. J. K. Wood, T. F., Jones, Investigations of sand-water induced erosive wear of AISI 304lstainless steel pipes by pilot-scale and laboratory-scale testing, Wear, 255 (1), (2003), 206–218.

DOI: 10.1016/s0043-1648(03)00095-4

Google Scholar

[31] R. J. K. Wood, T. F., Jones, J., Ganeshalingam, N. J., Miles, Comparison of predicted andexperimental erosion estimates in slurry ducts, Wear, 256 (9-10), (2004).

DOI: 10.1016/j.wear.2003.09.002

Google Scholar