[1]
M. M., Stack, S., Lekatos, and F. H., Stott, Erosion-corrosion regimes: Number, nomenclature and justification?, Tribology International, 28(7), (1995), 445-451.
DOI: 10.1016/0301-679x(95)00009-s
Google Scholar
[2]
F. H., Stott, M. P., Jordan, S., Lekatos, M. M., Stack, and G. C., Wood, The erosion-corrosion of alloys under oxidizing-sulfidizing conditions at high-temperature, Wear, 186(1), (1995), 291-298.
DOI: 10.1016/0043-1648(95)07149-0
Google Scholar
[3]
M. M., Stack, and Bray, L., Interprtitation of wastage mechanisms of materials exposed to elevated-temperature erosion-corrosion using erosion-corrosion maps and computer-graphics, Wear, 186(1), (1995), 273-283.
DOI: 10.1016/0043-1648(95)07174-1
Google Scholar
[4]
M. M. Stack, F. H. Stott, G. C. Wood, "Review of mechanisms of erosion-corrosion of alloys atelevated temperature, Wear 162, (1993), 706–712.
DOI: 10.1016/0043-1648(93)90070-3
Google Scholar
[5]
H. C. Meng, K. C. Ludema, Wear models and predictive equations: their form and content, " Wear 181-183 (Part 2), (1995), 443–457.
DOI: 10.1016/0043-1648(95)90158-2
Google Scholar
[6]
R. W. Lyczkowski, J. X. Bouillard, State-of-the-art review of erosion modeling in fluid/solidssystems, Progress in Energy and Combustion Science, 28 (6), (2002), 543–602.
DOI: 10.1016/s0360-1285(02)00022-9
Google Scholar
[7]
H. Argeso, A. N. Eraslan, On the use of temperature-dependent physical properties in thermomechanicalcalculations for solid and hollow cylinders, International Journal of ThermalSciences 47, (2008), 136–146.
DOI: 10.1016/j.ijthermalsci.2007.01.029
Google Scholar
[8]
D. J. O'Flynn, M. S. Bingley, M. S. A. Bradley, A. J. Burnett, "A model to predict the solidparticle erosion rate of metals and its assessment using heat-treated steels, Wear 248 (1-2), (2001), 162 – 177.
DOI: 10.1016/s0043-1648(00)00554-8
Google Scholar
[9]
C., Davis, and P., Frawley, Modelling of erosion-corrosion in practical geometries, Corrosion Science, 51(4), (2009), 769-775.
DOI: 10.1016/j.corsci.2008.12.025
Google Scholar
[10]
M. M, Stack, andF. H., Stott, An approach to modeling erosion-corrosion of alloys using erosion-corrosion maps, Corrosion Science, 35, (1993), 1027-1034.
DOI: 10.1016/0010-938x(93)90321-7
Google Scholar
[11]
M. M,; Stack, N., Corlett, and S., Zhou, Construction of erosion-corrosion maps for erosion in aqueous slurries, Materials Science and Technology, 12, (1996), 662-672.
DOI: 10.1179/mst.1996.12.8.662
Google Scholar
[12]
M. M., Stack, N., Corlett, andS., Turgoose, Some recent advances in the development of theoretical approaches for the construction of erosion-corrosion maps in aqueous conditions, Wear, 233, (1999), 535-541.
DOI: 10.1016/s0043-1648(99)00218-5
Google Scholar
[13]
M. M., Stack, B. D., Jana, Modelling particulate erosion-corrosion in aqueous slurries: someviews on the construction of erosion-corrosion maps for a range of pure metals, Wear, 256 (9-10), (2004), 986–1004.
DOI: 10.1016/j.wear.2003.09.004
Google Scholar
[14]
M. M., Stack, S. M., Abdelrahman, B. D., Jana, A new methodology for modelling erosion-corrosion regimeson real surfaces: Gliding down the galvanic series for a range of metal-corrosion systems, Wear, 268 (3-4), (2010), 533 – 542.
DOI: 10.1016/j.wear.2009.09.013
Google Scholar
[15]
G. L. Sheldon, A., Kanhere, Investigation of impingement erosion using single particle, Wear, 21 (1), (1972), 195–209.
DOI: 10.1016/0043-1648(72)90257-8
Google Scholar
[16]
K. M. Nho, Experimental investigation of heat flow rate and directional effect on contactconductance of anisotropic ground/lapped interfaces, Ph.D. thesis, University of Waterloo, Canada, (1990).
Google Scholar
[17]
S. K. Das, K. M., Godiwalla, S., Shubha, S. P., Mehrotra, P. K., Dey, A mathematical modelto characterize effect of silica content in the boiler fly ash on erosion behaviour of boilergrade steel, Journal of Materials Processing Technology, 204 (1-3), (2008).
DOI: 10.1016/j.jmatprotec.2007.11.055
Google Scholar
[18]
Y. Shida, H., Fujikawa, Particle erosion behavior of boiler tube materials at elevated temperature, Wear, 103 (4), (1985), 281–296.
DOI: 10.1016/0043-1648(85)90026-2
Google Scholar
[19]
D. R. Lide (Ed. ), CRC Handbook of Chemistry and Physics, 87th Edition, Taylor and Francis, Boca Raton, FL, USA, (2007), Ch. Properties of Solids, Ch. 12, p.195, CD-ROM Version.
DOI: 10.1021/ja069813z
Google Scholar
[20]
G. Sundararajan, A comprehensive model for the solid particle erosion of ductile materials, Wear, 149 (1-2), (1991), 111 – 127.
DOI: 10.1016/0043-1648(91)90368-5
Google Scholar
[21]
A. Forder, M., Thew, D., Harrison, A numerical investigation of solid particle erosion experiencedwithin oilfield control valves, Wear, 216 (2), (1998), 184–193.
DOI: 10.1016/s0043-1648(97)00217-2
Google Scholar
[22]
M. M., Stack, N., Corlett, and S., Zhou, Some thoughts on the effect of elastic rebounds on the boundaries of the aqueous erosion-corrosion map, Wear, 214 (2), (1998), 175–185.
DOI: 10.1016/s0043-1648(97)00243-3
Google Scholar
[23]
Y., Orcan, A. N., Eraslan, Thermal stresses in elastic-plastic tubes with temperature-dependentmechanical and thermal properties, Journal of Thermal Stresses, 24 (11), (2001), 1097–1113.
DOI: 10.1080/01495730152620087
Google Scholar
[24]
A. N. Eraslan, Y., Orcan, Computation of transient thermal stresses in elastic-plastic tubes: Effect of coupling and temperature-dependent physical properties, Journal of Thermal Stresses, 25 (6), (2002), 559-572.
DOI: 10.1080/01495730290074298
Google Scholar
[25]
N. Noda, Thermal stresses in materials with temperature dependent properties, In: Proceedingsof the NATO Advanced Research Workshop on Thermal Shockand Thermal Fatigue Behaviourof Advanced Ceramics, Kluwer Academic, MA, USA, (1993), p.15–26.
DOI: 10.1007/978-94-015-8200-1_2
Google Scholar
[26]
D. R. Lide, (Ed. ), CRC Handbook of Chemistry and Physics, 87th Edition, Taylor and Francis, Boca Raton, FL, USA, (2007), Ch. Fluid Properties, Ch. 6, p.2, CD-ROM Version.
DOI: 10.1021/ja069813z
Google Scholar
[27]
M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, Oxford, New York, (1966).
Google Scholar
[28]
B. T. Lu, J. L., Luo, F., Mohammadi, K., Wang, X. M., Wan, Correlation between repassivationkinetics and corrosion rate over a passive surface in flowing slurry, ElectrochimicaActa, 53 (23), (2008), 7022–7031.
DOI: 10.1016/j.electacta.2008.02.083
Google Scholar
[29]
FLUENT, Inc., FLUENT user's guide, Version 6. 3 (2006).
Google Scholar
[30]
R. J. K. Wood, T. F., Jones, Investigations of sand-water induced erosive wear of AISI 304lstainless steel pipes by pilot-scale and laboratory-scale testing, Wear, 255 (1), (2003), 206–218.
DOI: 10.1016/s0043-1648(03)00095-4
Google Scholar
[31]
R. J. K. Wood, T. F., Jones, J., Ganeshalingam, N. J., Miles, Comparison of predicted andexperimental erosion estimates in slurry ducts, Wear, 256 (9-10), (2004).
DOI: 10.1016/j.wear.2003.09.002
Google Scholar