Elaboration and Characterization of the Properties of Refractory Cr Base Alloys

Article Preview

Abstract:

For energy production and also for the glass industry, finding new refractory alloys which could permit to increase the process temperatures to 1200°C or more is a permanent challenge. Chromium base alloys can be good candidates, considering the melting point of Cr itself, and also its low corrosion rate in molten glass. Two families of alloys have been studied for this purpose, Cr-Mo-W and Cr-Ta-X alloys (X= Mo, Si..). A finer selection of compositions has been done, to optimize their chemical and mechanical properties. Kinetics of HT oxidation by air, of corrosion by molten glass and also creep properties of several alloys have been measured up to 1250°C. The results obtained with the best alloys (Cr-Ta base) give positive indications as regards the possibility of their industrial use.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

46-52

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Michon, L. Aranda, P. Berthod, P. Steinmetz: High temperature evolution of the microstructure of a cast cobalt base superalloy, consequences on its thermomechanical properties, La revue de Métallurgie (2004).

DOI: 10.1051/metal:2004116

Google Scholar

[2] J. Steinmetz, M. Vilasi, B. Roques: Oxidation and protection of Niobium base alloys, Colloque C9, Supplement to the journal of physics III, Vol. 3 (1993).

Google Scholar

[3] A. Carton, C. Rapin, R. Podor, P. Berthod: Corrosion of chromium in glass melts, J. Electrochem. Soc. 153 (3), B121-B127 (2006).

DOI: 10.1149/1.2165745

Google Scholar

[4] C. T. Liu, J. H. Zhu, M. P. Brady, C. G. McKamey and L. M. Pike: Physical metallurgy and mechanical properties of transition-metal Laves phase alloys, Intermetallics Vol. 8, Issues 9-11, 1119-1129 (2000).

DOI: 10.1016/s0966-9795(00)00109-6

Google Scholar

[5] J. Di Martino, S. Michon, L. Aranda, P. Berthod, R. Podor, C. Rapin: High temperature oxidation and glass corrosion of cobalt base superalloys, Annales de Chimie: Science des Matériaux 28 (SUPPL. 1), S231-S238 (2003)].

DOI: 10.1016/j.calphad.2003.12.002

Google Scholar

[6] H. Khedim, R. Podor, C. Rapin, M. Vilasi: Redox-Control Solubility of Chromium Oxide in Soda-Silicate Melts, J. Amer. Ceram. Soc., 91, 3571-3579 (2008).

DOI: 10.1111/j.1551-2916.2008.02692.x

Google Scholar

[7] Y.F. Gu, Y. Ro, H. Harada: The possibility of Cr-base alloys for high temperature applications, Materials Science Forum, vols. 475-479, 627-630 (2005).

DOI: 10.4028/www.scientific.net/msf.475-479.627

Google Scholar

[8] Y.F. Gu, Y. Ro, H. Harada: Chromium and chromium-based alloys: problems and possibilities for high temperature service, JOM, 56 (9) 28-33 (2004) Time hr Strain Strain MPa 31 MPa 45 MPa Sample.

DOI: 10.1007/s11837-004-0197-0

Google Scholar

[9] C.L. Briant, K.S. Kumar, N. Rosenberg, H. Tomioka: The mechanical properties of high purity chromium, International journal of refractory metals and hard metals, 18, 9-11 (2000).

DOI: 10.1016/s0263-4368(99)00031-1

Google Scholar

[10] S. Diliberto, C. Rapin, P. Steinmetz, M. Vilasi et P. Berthod, Oxidation of chromia forming molybdenum tungsten based alloys. Journal of Materials Science, 38(9), 2063-2072 (2003).

DOI: 10.4028/www.scientific.net/msf.369-372.825

Google Scholar

[11] L. Royer, X. Ledoux, S. Mathieu, P. Steinmetz, On the oxidation and nitridation of chromium at 1300°C, Oxidation of metals, in press (2010).

DOI: 10.1007/s11085-010-9198-2

Google Scholar