Self Diagnostic EB-PVD Thermal Barrier Coatings

Article Preview

Abstract:

Thermal barrier coatings (TBCs) are an enabling materials technology to improve the efficiency and durability of gas turbines and thus through such efficiency improvements offer reduce fuel usage and an associated reduction in CO2 emission. This commercial drive is pushing both aero- and industrial turbines to be lifetime dependent on TBC performance – the TBC must be “prime reliant”. However, the prediction of the durability of the TBC system has proved difficult, with lifetimes varying from sample to sample and component to component. One factor controlling this is the inability to measure accurately the bondcoat/ceramic interface temperature when buried under a TBC. In operating engines this is further exacerbated by the fact that such TBC systems operate in strong temperature gradients due to the need to cool aerofoil components. This research examines the design and manufacture of self diagnostic thermal barrier coatings capable of accurately measuring the interface temperature under the TBC, whilst providing the requisite thermal protection. Data on the temperature sensing capability of various rare earth doped EB-PVD thermal barrier coatings will be reported. It will be shown that systems exist capable of measuring temperatures in excess of 1300oC. Details of the measurement method, the compositions and the thermal stability of such systems will be discussed in this paper. The ability to produce a sensing TBC capable of measuring interface temperature, surface temperature and heat flux will further be discussed permitting the design of thermal barrier protected components capable of in-situ performance monitoring.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-74

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. K. Gupta, Energy. Convers. Mgmt, 38(10-13), (1997), 1311-1318.

Google Scholar

[2] D. S. Duvall and D. L. Ruckle, ASME Paper 82-GT-327 (1982).

Google Scholar

[3] J. R. Nicholls, Journal of Metals, Jan 2000, 28-35.

Google Scholar

[4] A.J. Glassman, Turbine Design and Application, NASA-SP-290-Vol. 3, Cleveland, Ohio (1975).

Google Scholar

[5] R. A. Miller and C. E. Lowell, Thin Solid Films 95 (3), 265-273 (1982).

Google Scholar

[6] S. M. Manning-Meier, D. M. Nissley, K. D. Sheffler and T. A. Cruz, ASME Paper 91-GT-40 (1991).

Google Scholar

[7] F. S. Pettit, G. W. Goward, Gas Turbine Applications, in Coatings for High Temperature Applications, edited by Lang, E., Applied Science Publishers Ltd., (1983) pp.341-355.

Google Scholar

[8] K. H. Stern, Metallurgical and Ceramic Protective Coatings, Chapman & Hall (1996).

Google Scholar

[9] P. G. Klemens, M. Gell, Materials Science and Engineering, A245 (1998), 143-149.

Google Scholar

[10] R. Siegel, C. M. Spuckler, Materials Science and Engineering, A245 (1998), 150-159.

Google Scholar

[11] J. R. Nicholls, K. J. Lawson, D. S. Rickerby and P. Morrell, Advanced Processing of TBC's for Reduced Thermal Conductivity", in 'Thermal Barrier Coatings, AGARD Report No. 823, paper 6, (April 1998).

Google Scholar

[12] J. R. Nicholls, K. L. Lawson, A. Johnstone and D. Rickerby, Surface and Coatings Technology, 151-142, (2002), 383-391.

DOI: 10.1016/s0257-8972(01)01651-6

Google Scholar

[13] J. R. Nicholls, Y. Jaslier and D. S. Rickerby, Materials Science Forum, 251, 935-948 (1997).

DOI: 10.4028/www.scientific.net/msf.251-254.935

Google Scholar

[14] K. L. Choy, J. P. Feist, A. L. Heyes, UK Patent Application No. 9823749. 8.

Google Scholar

[15] L.P. Goss, A. A. Smith, M. E. Post, Rev. Sci. Instrum 60 (12), (1989) p.3702.

Google Scholar

[16] K-L. Choy, J. P. Feist, A. L. Heyes and B. Su (1999), Journal of Materials Research, Vol. 14, No 7. pp.3111-3114.

Google Scholar

[17] A. S. Allison, G. T. Gillies, Rev. Sci. Instrum. 86, (1997), p.2615.

Google Scholar

[18] S. Alaruri, D. McFarland, A. Brewington, M. Thomas, N. Sallee, Optics and Lasers in Engineering, 22, (1995), 17-31.

DOI: 10.1016/0143-8166(94)00015-3

Google Scholar

[19] D. J. Bizzak, M. K. Chyu, Int. J. Heat Mass Transfer, 38, (2), (1995), 267-274.

Google Scholar

[20] L. J. Dowell, G.T. Gillies, Rev. Sci. Instruments, 62 (1), (1991), p.242.

Google Scholar

[21] S. W. Allison, M. R. Cates, B. W. Noel, G. T. Gillies, Trans. Instrum. Measurem., 37(4), (1988) p.637.

Google Scholar

[22] J. P. Feist and A. L. Heyes (2000), Proceedings of the Institution of Mechanical Engineers, 214, Part I, 7-11.

Google Scholar

[23] G. Blasse, Chemistry and Physics of R-activated Phosphors, Handbook on the Physics and Chemistry of Rare-Earths, edited by Gschneidner, K.A., Hr., Eyring L., North Holland Publishing Company, (1979) pp.237-274.

DOI: 10.1016/s0168-1273(79)04007-1

Google Scholar

[24] S. Hüfner, Optical Spectra of Transparent Rare Earth Compounds, Academic Press, (1978).

Google Scholar

[25] B. G. Wybourne, Spectroscopic Properties of Rare Earths, J. Wiley & Sons, Inc. (1965).

Google Scholar

[26] J. P. Feist, A. L. Heyes and J. R. Nicholls (2001), 'Proceedings of Institution of Mechanical Engineers, 215 Part G, 333-340.

Google Scholar

[27] M. M. Gentleman and D.R. Clarke (2005), 'Surface and Coatings Technology, Vol. 200, pp.1264-1269.

Google Scholar

[28] M. M. Gentlemen, D. R. Clarke (2004), Surface and Coatings Technology, Vol. 188, pp.681-687.

Google Scholar

[29] M. M. Gentleman, J. I. Eldridge, D. M. Zhu, K. S. Murphy and D. R. Clarke (2006), Surface and Coatings Technology, Vo. 201, pp.3939-3941.

Google Scholar

[30] R. J. L. Steenbakker, R. G. Wellman, J. R. Nicholls and J. P. Feist, Proc ASME Turbo 2008, GT2008-51192.

Google Scholar

[31] J. P. Feist, A. L. Heyes, S. Seefeldt (2002).

Google Scholar