The Influence of Helium and ODS on the Irradiation-Induced Hardening of Eurofer97 at 300°C

Article Preview

Abstract:

The influence of helium on the mechanical properties of reduced-activation ferritic/martensitic Cr-steels under fusion-relevant irradiation conditions is still a concern. While the fact that He can influence the mechanical properties is well established [1,2], the underlying mechanisms are not fully understood [1,2]. In this work the effect of He and displacements per atom (dpa) on the irradiation-induced hardening of Eurofer97 at 300°C was studied. Self-ion irradiation was applied to simulate the neutron-irradiation-induced damage. Helium was implanted prior to (pre-implantation), simultaneously (dual-beam irradiation) or following the (post-implantation) self-ion irradiation to investigate the He effect. Nanoindentation was used in order to characterize the damage layer. Under the present conditions (300°C, 1 dpa, 10 appmHe) the observed hardening increased in the following order: single-beam Fe-ion irradiation/pre-implantation < simultaneous implantation < post-implantation. We conclude, that there is a significant interaction between damage and He. Additionally, Eurofer97 and ODS-Eurofer were irradiated with Fe ions up to 1 and 10 dpa to study the effect of the oxide particles on the irradiation-induced hardening. We have found a higher irradiation-induced hardening at 1 dpa for ODS-Eurofer but a steeper hardness increase per dpa up to 10 dpa for Eurofer97.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

124-129

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Trinkaus, B.N. Singh: J. Nucl. Mater. 323 (2003) p.229.

Google Scholar

[2] R. Schäublin, Y.L. Chiu: J. Nucl. Mater. 362 (2007) p.152.

Google Scholar

[3] E. Lucon et al.: Fus. Eng. Des. 81 (2006) p.917.

Google Scholar

[4] N. Baluc: Plasma Phys. Control. Fusion 48 (2006) p. B165.

Google Scholar

[5] E.H. Lee, J.D. Hunn, G.R. Rao, R.L. Klueh, L.K. Mansur: J. Nucl. Mater. 271&272 (1999) p.385.

Google Scholar

[6] H. Ogiwara, A. Kohyama, H. Tanigawa, H. Sakasegawa: Fus. Eng. Des. 81 (2006) p.1091.

Google Scholar

[7] R.L. Klueh, D.S. Gelles, S. Jistukawa, A. Kimura, G.R. Odette, B. van der Schaaf, M. Viktoria: J. Nucl. Mater. 370-311 (2002) p.455.

Google Scholar

[8] E. Gaganidze, J. Aktaa: Fus. Eng. Des. 83 (2008) p.1498.

Google Scholar

[9] G. Yu, X. Li, J. Yu, Y. Wu, H. Kinoshita, H. Takahashi, M. Victoria: J. Nucl. Mater. 329-333 (2004) p.1003.

Google Scholar

[10] Z. Jiao, H. Ham, G.S. Was: J. Nucl. Mater. 367-370 (2007) p.440.

Google Scholar

[11] D.J. Mazey: J. Nucl. Mater. 174 (1990) p.196.

Google Scholar

[12] E. Lucon, A. Leenaers, W. Vandermeulen: Fus. Eng. Des. 82 (2007) p.2438.

Google Scholar

[13] R. Lindau, A. Möslang, M. Schirra, P. Schlossmacher, M. Klimenkov: J. Nucl. Mater. 307-311 (2002) p.769.

DOI: 10.1016/s0022-3115(02)01045-0

Google Scholar

[14] R. Schäublin, A. Ramar, N. Baluc, V. de Castro, M.A. Monge, T. Lequey, N. Schmid, C. Bonjour: J. Nucl. Mater. 351 (2006) p.247.

DOI: 10.1016/j.jnucmat.2006.02.005

Google Scholar

[15] C. Heintze, C. Recknagel, F. Bergner, M. Hernández-Mayoral, A. Kolitsch: Nucl. Instr. and Meth. B 267 (2009) p.1505.

Google Scholar

[16] M. Ando, H. Tanigawa, S. Jitsukawa, T. Sawai, Y. Katoh, A. Kohyama, K. Nakamura, H. Takeuchi: J. Nucl. Mater. 307-311 (2002) p.260.

DOI: 10.1016/s0022-3115(02)01250-3

Google Scholar

[17] W.C. Oliver, G.M. Pharr: J. Mater. Res. 19 (2004) p.3.

Google Scholar