The Influence of Helium and ODS on the Irradiation-Induced Hardening of Eurofer97 at 300°C

Abstract:

Article Preview

The influence of helium on the mechanical properties of reduced-activation ferritic/martensitic Cr-steels under fusion-relevant irradiation conditions is still a concern. While the fact that He can influence the mechanical properties is well established [1,2], the underlying mechanisms are not fully understood [1,2]. In this work the effect of He and displacements per atom (dpa) on the irradiation-induced hardening of Eurofer97 at 300°C was studied. Self-ion irradiation was applied to simulate the neutron-irradiation-induced damage. Helium was implanted prior to (pre-implantation), simultaneously (dual-beam irradiation) or following the (post-implantation) self-ion irradiation to investigate the He effect. Nanoindentation was used in order to characterize the damage layer. Under the present conditions (300°C, 1 dpa, 10 appmHe) the observed hardening increased in the following order: single-beam Fe-ion irradiation/pre-implantation < simultaneous implantation < post-implantation. We conclude, that there is a significant interaction between damage and He. Additionally, Eurofer97 and ODS-Eurofer were irradiated with Fe ions up to 1 and 10 dpa to study the effect of the oxide particles on the irradiation-induced hardening. We have found a higher irradiation-induced hardening at 1 dpa for ODS-Eurofer but a steeper hardness increase per dpa up to 10 dpa for Eurofer97.

Info:

Periodical:

Edited by:

Pietro VINCENZINI, Hua-Tay LIN and Kevin FOX

Pages:

124-129

DOI:

10.4028/www.scientific.net/AST.73.124

Citation:

C. Heintze et al., "The Influence of Helium and ODS on the Irradiation-Induced Hardening of Eurofer97 at 300°C", Advances in Science and Technology, Vol. 73, pp. 124-129, 2010

Online since:

October 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.