Cold Crucible Inductive Melting Technology – Application to Vitrification and Ceramization of High Level and Actinide Wastes

Article Preview

Abstract:

Cold crucible inductive melting is a promising method for production of high-temperature materials. The method is based on direct heating of conductive materials by high-frequency (105-107 Hz) electromagnetic field from an external source. Application of the CCIM to production of vitreous borosilicate and alumino/iron phosphate and ceramic waste forms such as Synroc and its varieties and pyrochlore, murataite and garnet-based ceramics has been successfully demonstrated. Currently a full-scale low level waste vitrification plant based on a 418 mm inner diameter cold crucibles energized from a 1.76MHz/160 kW generators is under operation at SIA Radon. This plant was used for demonstration of feasibility of cold crucible vitrification of Savannah River Site high-iron and high iron/aluminum high level wastes. Numerous ceramic and glass ceramic materials containing high level and actinide waste surrogates such as actinide and actinide/rare earth fractions of high level waste have been successfully produced in the Radon lab- and bench-scale cold crucible based units operated at 5.28 and 1.76 MHz. Large-scale cold crucibles may be applied for vitrification of liquid and solid low and high level wastes whereas small-scale cold crucible may be efficiently used for immobilization of actinide-bearing waste generated from advanced nuclear fuel cycle reprocessing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

183-193

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.A. Dmitriev and S.V. Stefanovsky: Management of Radioactive Wastes (MUCT Publications, Moscow 2000).

Google Scholar

[2] A.V. Demine, N.V. Krylova, P.P. Poluektov, I.N. Shestoperov, T.V. Smelova, V.F. Gorn and G.M. Medvedev: Mat. Res. Soc. Symp. Proc. Vol. 663 (2001, p.27.

DOI: 10.1557/proc-663-27

Google Scholar

[3] R. Do Quang, A. Jensen, A. Prod'homme, R. Fatoux and J. Lacombe, in: Waste Management 2002 Conf., Tucson, AZ (2002).

Google Scholar

[4] J.A. Roach and J.G. Richrdson, in Waste Management 2006 Conf., Tucson, AZ (2006).

Google Scholar

[5] M. Delauney, A. Ledoux, J. -L. Dussossoy, P. Boussier, J. Lacombe, C. Girold, C. Veyer and E. Tchemitcheff, in: Waste Management 2009 Conf., Phoenix, AZ (2009) 9186.

Google Scholar

[6] G. Sugilal and P.B.S. Sengar, in: Waste Management 2008 Conf., Phoenix, AZ (2008) 8005.

Google Scholar

[7] K. -H. Yang, S. -W. Shin and C. -K. Moon, in Waste Management 2009 Conf., Phoenix, AZ (2009) 9107.

Google Scholar

[8] Y.B. Petrov: Inductive Melting of Oxides (Russ.: Energoatomizdat, Leningrad 1983).

Google Scholar

[9] Y.S. Kuz'minov, E.E. Lomonova and V.V. Osiko: High-Fusible Materials from Cold Crucible (Russ.: Nauka, Moscow 2004).

Google Scholar

[10] F.A. Lifanov, M.I. Ojovan, S.V. Stefanovsky and R. Burcl: Mater. Res. Soc. Symp. Proc. Vol. 757 (2003), p.201.

Google Scholar

[11] A.P. Kobelev, S.V. Stefanovsky, T.N. Lashchenova, V.N. Zakharenko, M.A. Polkanov, C.C. Herman, D.F. Bickford, E.W. Holtzscheiter, R.W. Goles and D. Gombert, in: ICEM'05: The 10th Int. Conf. on Environmental Remediation and Radioactive Waste Management, Glasgow, Scotland (2005).

Google Scholar

[12] A.P. Kobelev, S.V. Stefanovsky, O.A. Knyazev, T.N. Lashchenova, A.G. Ptashkin, M.A. Polkanov, E.W. Holtzscheiter and J.C. Marra, in: Waste Management 2006 Conf., Tucson, AZ (2006) 6127.

DOI: 10.1557/proc-932-88.1

Google Scholar

[13] S.V. Stefanovsky, A.P. Kobelev, V.V. Lebedev, M.A. Polkanov, A.G. Ptashkin, O.A. Knyazev and J.C. Marra, in: ICEM 09 /DECOM , 09: 12th Int. Conf. on Environmental Remediation and Radioactive Waste Management, Liverpool, UK (2009) 16197.

DOI: 10.1115/icem2009-16197

Google Scholar

[14] O.A. Knyazev, B.S. Nikonov, B.I. Omelianenko, S.V. Stefanovsky, S.V. Yudintsev, R.A. Day and E.R. Vance, in: SPECTRUM '96: Proc. Int. Top. Meet. on Nuclear and Hazardous Waste Management, Seattle, WA (1996), p.2130.

Google Scholar

[15] I.A. Sobolev, F.A. Lifanov, S.V. Stefanovsky and S.A. Dmitriev, in: Waste Management 1995 Conf., Tucson, AZ (1995) 17-11.

Google Scholar

[16] S.V. Ioudintsev, B.S. Nikonov, B.I. Omelianenko and S.V. Stefanovsky, in: Proc. Sixth Int. Conf. on Radioactive Waste Management and Environmental Remediation ICEM'97, edited by R. Baker, S. Slate and G. Benda, The ASME, New York, NW (1997).

Google Scholar

[17] S.V. Stefanovsky, O.A. Knyazev, D.B. Lopukh and S.V. Ioudintsev, in: Proc. IT3 Int. Conf. On Incineration & Thermal Treatment Technologies, Salt Lake City, UT (1998), p.155.

Google Scholar

[18] F.J. Ryerson: J. Amer. Ceram. Soc. Vol. 67 (1984), p.75.

Google Scholar

[19] T. S. Ercit and F.C. Hawthorne: Canad. Miner. Vol. 33 (1995), p.1223.

Google Scholar

[20] S.V. Yudintsev, S.V. Stefanovsky and R.C. Ewing, in: Structural Chemistry of Inorganic Actinide Compounds, edited by S.V. Krivovichev, P.C. Burns and I.G. Tananaev/Elsevier B.V., Amasterdam, The Netherlands (2007), p.457.

DOI: 10.1016/b978-044452111-8/50014-4

Google Scholar

[21] I.A. Sobolev, S.V. Stefanovsky, S.V. Ioudintsev, B.S. Nikonov, B.I. Omelianenko and A.V. Mokhov: Mat. Res. Soc. Symp. Proc. Vol. 465 (1997), p.363.

DOI: 10.1557/proc-465-363

Google Scholar