The Relationship of Electrical and Structural Properties of Synthetic Melanin Embedded in Matrix of Thin Films Zinc Oxide, for their Use as Electrodes in Bio-Generators

Article Preview

Abstract:

Melanin doped zinc oxide thin films were obtained using a process of soft chemistry with pH in the basic region. The electric and structural properties of these films were compared with films of un-doped ZnO obtained using the same process. Undoped films show the characteristic diffraction pattern of polycrystalline ZnO wurtzite type, while the doped films also present other signals associated to the melanin or some derived present phase of this. It is relevant because melanin is reported as amorphous material. Differences of grain size were detected and attributed to the presence of at least two existent phases in the films. Resistivity data were analyzed from the obtained values of films of un-doped ZnO and associated to the structural changes. The films have turned out to be stable in bio-generating systems of useful energy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-35

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Daniels, Fisicoquímica. CECSA. (1982).

Google Scholar

[2] A. Dassler. Electroquímica y sus fundamentos electroquímicos. UTEHA, 1962. Part I: pp.121-141; Part II: pp.92-174.

Google Scholar

[3] D. Ball. Physical Chemistry. 1st Edition. Cengage Learning Publisher, 2004. ISBN 9706863281.

Google Scholar

[4] B. O'Regan, M. Graetzel. Nature. 353 (24), 737-740. October (1991).

Google Scholar

[5] M. Bär, K. -S. Ahn, S. Shet, Y. Yan, L. Weinhardt, O. Fuchs, M. Blum,S. Pookpanratana, K. George, W. Yang, J. D. Denlinger, M. Al-Jassim, and C. Heske1: Applied Physics Letters 94, 012110 (2009).

DOI: 10.1063/1.3056638

Google Scholar

[6] V. Capozzi, G. Perna, P. Carmone, A. Gallone, M. Lastella, E. Mezzenga, G. Quartucci, M. Ambrico, V. Augelli, P.F. Biagi, T. Ligonzo, A. Minafra, L. Schiavulli, M. Pallara, R. Cicero. Thin Solid Films 511-512 (2006) 362-366.

DOI: 10.1016/j.tsf.2005.12.065

Google Scholar

[7] Y. T. Thathachari, M. S. Blois. Biophysical Journal, Vol. 9, Issue 1, 77-89, 1 January (1969).

Google Scholar

[8] T. Sarna, P. M. Plonka. Biomedical EPR, Part A: Free Radicals, Metals, Medicine, and Physiology. Spronger US Publisher. ISBN 978-0-306-48506-0. pp.125-146.

DOI: 10.1007/0-387-26741-7_7

Google Scholar

[9] C. C. Felix, R. C. Sealy. J. Amer. Chem. Soc. 100 (1978a) pp.3922-3926.

Google Scholar

[10] C. C. Felix, J. S. Hyde, T. Sarna, R. C. Sealy. J. Amer. Chem. Soc. 103 (1981) pp.2831-2836.

Google Scholar

[11] A. Solís, M. E. Lara, L. E. Rendón. Nature Precedings. Posted 12 November 2007. http: /precedings. nature. com/account/show/1105.

Google Scholar

[12] D. C. Altamirano-Juarez. Advances in Science and Technology. Trans Tech Publications Ltd. (54) 2008. pp.337-342.

Google Scholar

[13] D. C. Altamirano-Juarez. Influencia de la variación de parámetros involucrados en la técnica Sol-Gel, en películas delgadas de ZnO impurificadas, para su uso como electrodos transparentes. Doctoral Tesis. (Library of CINVESTAV-IPN, Unidad Querétaro; México. Agosto 2007).

DOI: 10.24275/uami.dj52w4823

Google Scholar

[14] D. C. Altamirano-Juarez, R. Castanedo-Perez, O. Jimenez-Sandoval, S. Jimenez-Sandoval, J. Marquez-Marin and G. Torres-Delgado. Modern Physics Letter B. Vol 15, 17-19 (2001) 730-732. Word Scientific Publishing Company.

DOI: 10.1142/s0217984901002403

Google Scholar

[15] S. A. Studenikin, Nickolay Golego and Michael Cocivera. J. Appl. Phys. Vol. 87 (5) (2000) pp.2413-2421.

Google Scholar

[16] C. A. Bishop, L. K. J. Iong. Tetrahedron letters 41, 3043 (1964).

Google Scholar