Essential Factors to Make Excellent Biocompatibility of Phospholipid Polymer Materials

Article Preview

Abstract:

Recently, much attention has been attracted to bio/blood compatible materials to suppress undesirable biological reactions that determine the fate of living organisms and materials. A phospholipid polymer composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) unit, which is designed by inspiration of cell membrane surface structure, is the most promising polymer biomaterial with excellent bio/blood compatibility. Progress in living radical polymerization method initiated from the surface enables preparation of a dense polymer chains on the surface, which is called as a polymer brush. The polymer brush structure has narrow molecular weight distribution and controlled chain length. So, it is ideal surface to clarify the interactions between the biomolecules and biomaterial surface that has never done. In these regards, the poly(MPC) brush surfaces are expected to be a novel class of biomaterials, and have been extensively studied its unusual properties. In this review, surface-initiated living radical polymerization of MPC and the characteristics of the poly(MPC) brush surfaces are summarized from a viewpoint of biomaterials science.

You might also be interested in these eBooks

Info:

[1] H. Chen, L. Yuan, W. Song, Z. Wu, and D. Li: Prog. Polym. Sci. Vol. 33 (2008), p.1059.

Google Scholar

[2] S.J. Singer and G. L. Nicolson. Science Vol. 175 (1972), p.720.

Google Scholar

[3] J.A. Hayward, and D. Chapman: Biomaterials Vol. 5 (1984) p.135.

Google Scholar

[4] K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki, and N. Nakabayashi: J. Biomed. Mater. Res. Vol. 39 (1998), p.323.

DOI: 10.1002/(sici)1097-4636(199802)39:2<323::aid-jbm21>3.0.co;2-c

Google Scholar

[5] K. Ishihara, N. P. Ziats, B. P. Tierney, N. Nakabayashi, and J.M. Anderson: J. Biomed. Mater. Res. Vol. 25 (1991), p.1397.

Google Scholar

[6] K. Ishihara, H. Oshida, Y. Endo, T. Ueda, A. Watanabe, and N. Nakabayashi: J. Biomed. Mater. Res. Vol. 26 (1992), p.543.

Google Scholar

[7] A.L. Lewis, Colloids Surf. B, Biointerface Vol. 18 (2000), p.261.

Google Scholar

[8] K. Sugiyama, K. Shiraishi, K. Okada, and O. Matsuo: Polym. J. Vol. 31 (1999), p.883.

Google Scholar

[9] M. Kimura, M., K. Fukumoto, J. Watanabe, M. Takai and K. Ishihara: Biomaterials Vol. 26 (2005), p.6853.

Google Scholar

[10] K. Ishihara, K., T. Tsuji, T. Kurosaki, and N. Nakabayashi: J. Biomed. Mater. Res. Vol. 28 (1994), p.225.

Google Scholar

[11] S. Yusa, K. Fukuda, T. Yamamoto, K. Ishihara, and Y. Morishima: Biomacromolecules Vol. 6 (2005), p.663.

Google Scholar

[12] Y.I. Ma, E. J. Lobb, N. C. Billingham, S. P. Armes, A. L. Lewis, and A. W. Lloyd, J. Salvage: Macromolecules Vol. 35 (2002), p.9306.

Google Scholar

[13] Y. Inoue, J. Watanabe, and K. Ishihara: J. Colloid Interface Sci. Vol. 274 (2004), p.465.

Google Scholar

[14] Y. Inoue, J. Watanabe, M. Takai, S. Yusa, and K. Ishihara: J. Polym. Sci: Part A: Polym. Chem. Vol. 43 (2005), p.6073.

Google Scholar

[15] M. Kyomoto, T. Moro, T. Konno, H. Takadama, N. Yamasaki, H. Kawaguchi, Y. Takatori, K. Nakamura, and K. Ishihara: J. Biomed. Meter. Res. Vol. 82 (2007), p.10.

Google Scholar

[16] T. Hoshi, R. Matsuno, T. Sawaguchi, T. Konno, M. Takai, and K. Ishihara: Appl. Surf. Sci. Vol. 255 (2008) p.379.

Google Scholar

[17] K. Sugiyama, K. Kato, M. Kido, K. Shiraishi, K. Ohga, K. Okada, and O. Matsuo: Macromol Chem Phys. Vol. 199 (1998), p.1201.

Google Scholar

[18] J. Sibarani, T. Konno, M. Takai, and K. Ishihara: Key. Eng. Mater. Vol. 342-342 (2007), p.789.

Google Scholar

[19] T. Goda, T. Konno, M. Takai, and K. Ishihara: Colloid Surf. B: Biointerfaces Vol. 54 (2007), p.67.

Google Scholar

[20] T. Goda, T. Konno, M. Takai, T. Moro, K. Ishihara: Biomaterials Vol. 27 (2006), p.5151.

Google Scholar

[21] R. Iwata, R., P. Suk-In, V. P. Hoven, A. Takahara, K. Akiyoshi, and Y. Iwasaki: Biomacromolecules Vol. 5 (2004) p.2308.

Google Scholar

[22] W. Feng, S. Zhu, K. Ishihara, and J. L. Brash: Langmuir Vol. 21 (2005), p.5980.

Google Scholar

[23] W. Feng, W., S. Zhu, K. Ishihara, and J. L. Brash: Biointerphases Vol. 1 (2006) p.50.

Google Scholar

[24] W. Feng, W., J. L. Brash, and S. Zhu: Biomaterials Vol. 27 (2006), p.847.

Google Scholar

[25] D. Miyamoto, J. Watanabe, and K. Ishihara: J. Appl. Polym. Sci. Vol. 95 (2005) p.615.

Google Scholar

[26] Y. Matsuda, M. Kobayashi, M. Annaka, K. Ishihara, and A. Takahara: Langmuir Vol. 24 (2008) p.8772.

Google Scholar

[27] Y. Iwasaki, Y. Omichi, and R. Iwata: Langmuir Vol. 24 (2008) p.8427.

Google Scholar

[28] R.A. Narain, R., A. Housni, and L. Lane: J. Polym. Sci.: Part A: Polym. Chem. Vol. 44 (2006) p.6558.

Google Scholar

[29] L. Zhu, Q. Jin, J. Xu, J. Ji, and J. Shen: J. Appl. Polym. Sci. Vol. 113 (2009) p.351.

Google Scholar

[30] R. Matsuno, Y. Goto, T. Konno, M. Takai, and K. Ishihara: J. Nanosci. Nanotechnol. Vol. 9 (2009) p.358.

Google Scholar

[31] J. Pyum, T. Kowalewski, and K. Matyjaszewski: Macromol. Rapid Commun. Vol. 24 (2003) p.1043.

Google Scholar

[32] S. Yamamoto, M. Ejaz, Y. Tsujii, M. Matsumoto, and T. Fukuda: Macromolecules Vol. 33 (2000) p.5602.

Google Scholar

[33] S. Yamamoto, M. Ejaz, Y. Tsujii, and T. Fukuda: Macromolecules Vol. 33 (2000) p.5608.

Google Scholar

[34] C. Yoshikawa, A. Goto, Y. Tsujii, T. Fukuda, T. Kimura, K. Yamamoto, and A. Kishida: Macromolecules Vol. 39 (2006) p.2284.

Google Scholar

[35] B. S. Lee, Y. S. Chi, K. B. Lee, Y. G. Kim, and I. S. Choi: Biomacromolecules Vol. 8 (2007) p.3922.

Google Scholar

[36] Z. Zhang, S. Chen, Y. Chang, and S. Jiang: J. Phys. Chem. B Vol. 110 (2006) p.10799.

Google Scholar

[37] Y. Chang, S. C. Liao, A. Higuchi, R. C. Ruaan, C. W. Chu, and W. Y. Chen: Langmuir Vol. 24 (2008) p.5453.

Google Scholar

[38] Z. Zhang, S. Chen, and S. Jiang: Biomacromolecules Vol. 7 (2006) p.3311.

Google Scholar

[39] Z. Zhang, H. Vaisocherova, G. Cheng, W. Yang, H. Xue, and S. Jiang: Biomacromolecules Vol. 9 (2008) p.2686.

Google Scholar

[40] R. Barbey, L. Lavanant, D. Paripovic, N. Schuwer, C. Sugnaux, S. Tugulu, and H. -A. Klok: Chem. Rev. Vol. 109 (2009) p.5437.

DOI: 10.1021/cr900045a

Google Scholar

[41] F.J. Xu, K. G. Neoh, E. T. Kang: Prog. Polym. Sci. Vol. 34 (2009) p.719.

Google Scholar

[42] S. Edmondson and S. P. Armes: Polym. Int. Vol. 58 (2009) p.307.

Google Scholar

[43] K. Kitano, Y. Inoue, R. Matsuno, M. Takai, and K. Ishihara: Colloid Surf. B: Biointerfaces Vol. 74 (2009) p.350.

Google Scholar

[44] W. Feng, J. Brash, and S. Zhu: J. Polym. Sci: Part A: Polym. Chem. Vol. 42 (2004) p.2931.

Google Scholar

[45] M. Husseman, E. E. Malmstrom, M. McNamara, M. Mate, D. Mecerreyes, D. G. Benoit, J. L. Hedrick, P. Mansky, E. Huang, T. P. Russell, and C. J. Hawker: Macromolecules Vol. 32 (1999) p.1424.

DOI: 10.1021/ma981290v

Google Scholar

[46] M. Kobayashi, Y. Terayama, N. Hosaka, M. Kaido, A. Suzuki, N. Yamada, N. Torikai, K. Ishihara, and A. Takahara: Soft Mater. Vol. 3 (2007) p.740.

DOI: 10.1039/b615780g

Google Scholar

[47] M. Kobayashi, Y. Terayama, M. Hino, K. Ishihara, and A. Takahara: J. Phys.: Conference Series Vol. 184 (2009) p.012010.

Google Scholar

[48] W. Yang, H. Xue, W. Li, J. Zhang, and S. Jiang: Langmuir Vol. 25 (2009) p.11911.

Google Scholar

[49] T. Nakanishi, Y. Inoue, R. Matsuno, M. Takai, and K. Ishihara: Trans. Mater. Res. Soc. Vol. 35 (2010) p.135.

Google Scholar

[50] Y. Inoue, T. Tsukahara, and K. Ishihara, in: Nanobio-Interaces in Relation to Molecular Mobility, editted by N. Yui, K. Ishihara, A. Kishida, T. Yamaoka, JAIST PRESS, Ishikawa, (2010), p.139.

Google Scholar