Molecular Modeling and Experimental Investigation of Hydrolytically Degradable Polymeric Biomaterials

Article Preview

Abstract:

Biodegradable polymers are applied in temporary implants, such as surgical sutures and controlled drug delivery systems. They are also of relevance in biomaterial-based Regenerative Therapies, where they provide a temporary substitute of the extra-cellular matrix. A major limitation of established degradable implant materials is the fact, that their degradation behavior can not be reliably predicted applying existing experimental methodologies. Therefore a knowledge-based approach is clearly needed to overcome this problem and to enable the tailored design of biodegradable polymers. Here we describe two methods, which can be applied in this approach: molecular modeling combining atomistic bulk and interface models with quantum chemical studies and experimental investigations of macromolecule degradation in Langmuir monolayers. The polymers utilized to exemplarily illustrate the concepts are aliphatic (co)polyesters [e.g. poly(-caprolactone) (PCL), polyglycolide (PGA), poly(rac-lactide) (PDLLA), poly[(rac-lactide)-co-glycolide] (PLGA)] and copoly(ether)esteruretanes as multiblock copolymers. The molecular modeling approach permits to efficiently investigate the influence of micro-structural properties like free volume distribution, cohesive energy density and concentration of polar functional groups on the bulk water uptake as one constituent part of hydrolytic degradation. The Langmuir monolayer investigations on polymer degradation on the other hand yield the dynamics of bond splitting during degradation within hours separately from time consuming diffusion processes, which may take months in bulk samples.

You might also be interested in these eBooks

Info:

[1] A. Lendlein: Chemie in unserer Zeit Vol. 33 (1999), p.279.

Google Scholar

[2] P. A. Gunatillake and R. Adhikari: Eur. Cell. Mater. Vol. 5 (2003), p.1.

Google Scholar

[3] A. Goepferich: in: Handbook of Biodegradable Polymers, edited by A.J. Domb, J. Kost, D.M. Wiseman, Harwood Academic Publishers, Amsterdam (1997).

Google Scholar

[4] D.W. Hutmacher: Biomaterials Vol. 21 (2000), p.2529.

Google Scholar

[5] J. C. Middleton and A. J. Tipton: Biomaterials Vol. 21 (2000), p.2335.

Google Scholar

[6] V.P. Shastri, A. Lendlein: Adv. Mat. Vol. 21 (2009), p.3231.

Google Scholar

[7] T. Weigel, G. Schinkel, A. Lendlein: Exp. Rev. Med. Dev. Vol. 3 (2006), p.835.

Google Scholar

[8] A. Lendlein, P. Neuenschwander, U.W. Suter: Macromol. Chem. Phys. Vol. 199 (1998), p.2785.

Google Scholar

[9] A. Lendlein, P. Neuenschwander, U.W. Suter: Macromol. Chem. Phys. Vol. 201 (2000), p.1067.

Google Scholar

[10] A. Lendlein, M. Colussi, P. Neuenschwander, U.W. Suter: Macromol. Chem. Phys. Vol. 202 (2001), p.2702.

Google Scholar

[11] A.T. Neffe, G. Tronci, A. Alteheld, A. Lendlein: Macromol. Chem. Phys. Vol. 211 (2010), p.182.

Google Scholar

[12] M. Vert, S. Li, H. Garreau, J. Mauduit and M. Boustta: Angew. Makromol. Chem. Vol. 247 (1997), p.239.

DOI: 10.1002/apmc.1997.052470116

Google Scholar

[13] R. Chandra and R. Rustgi: Prog. Polym. Sci. Vol. 23 (1998), p.1335.

Google Scholar

[14] J. Blomqvist, B. Mannfors and L. -O. Pietilä: J. Mol. Struct. (Teochem) Vol. 531 (2000), p.359.

Google Scholar

[15] M. Entrialgo-Castano, A. Lendlein and D. Hofmann: Adv. Eng. Mater. Vol. 8 (2006), p.434.

Google Scholar

[16] M. Entrialgo-Castano, A. E. Salvucci, A. Lendlein and D. Hofmann: Macromol. Symp. Vol. 269 (2008), p.47.

Google Scholar

[17] J. Reiche, A. Kulkarni, K. Kratz and A. Lendlein: Thin Solid Films Vol. 516 (2008), p.8821.

DOI: 10.1016/j.tsf.2007.11.053

Google Scholar

[18] A. Kulkarni, J. Reiche and A. Lendlein: Surf. Interface Anal. Vol. 39 (2007), p.740.

Google Scholar

[19] A. Kulkarni, J. Reiche, J. Hartmann, K. Kratz and A. Lendlein: Eur. J. Pharm. Biopharm. Vol. 68 (2008), p.46.

Google Scholar

[20] D. Hofmann, M. Entrialgo-Castano, K. Kratz, and A. Lendlein: Adv. Mat. Vol. 21 (2009), p.3237.

Google Scholar

[21] M. Vert, S. Li and H. Garreau, J. Mauduit and M. Boustta: Angew. Makromol. Chem. Vol. 247 (1997), p.239.

DOI: 10.1002/apmc.1997.052470116

Google Scholar

[22] H. Grablowitz, A. Lendlein: J. Mat. Chem. Vol. 17 (2007), p.4050.

Google Scholar

[23] Material Studio Software Package; Accelrys Inc.: San Diego, CA, (2008).

Google Scholar

[24] D. Hofmann, L. Fritz, J. Ulbrich, C. Schepers, M. Boehning: Macromol. Theory Simul. Vol. 9 (2000), p.293.

Google Scholar

[25] A. Kulkarni, J. Reiche, K. Kratz, H. Kamusewitz, I. M. Sokolov, A. Lendlein: Langmuir 2007, 23, 12202.

DOI: 10.1021/la701523e

Google Scholar

[26] S. Hurrel, R.E. Cameron: Biomaterials Vol. 23 (2002), p.2401.

Google Scholar

[27] S. Li, H. Garreau, M. Vert: J. Mater. Sci. Mater. Med. Vol. 1 (1990), p.198.

Google Scholar

[28] H. Mark (ed. ): Encyclopedia of Polymer Science and Technology (Wiley-VCH, Germany, 2004).

Google Scholar

[29] D. Hofmann, E. Schulz: Polymer Vol. 30 (1989), p. (1964).

Google Scholar

[30] H. -P. Fink, D. Hofmann, H.J. Purz: Acta Polym. Vol. 41 (1990), p.131.

Google Scholar