Stoichiometry and Surface Stress Analyses in Advanced Alumina/Zirconia Composites for Hip Arthroplasty Applications

Article Preview

Abstract:

A spatially resolved cathodoluminescence (CL) analysis is used as a means for chemical and mechanical analyses of the composite surface after environmental exposure. CL emission proves extremely efficient in concurrently monitoring the concentration of point defects (e.g., oxygen vacancies) on the material surface. Using CL, averaging effects from sub-surface parts of the material can be minimized, and the actual chemical state of the material surface is revealed. As a result, information about the stoichiometry of the material surface can be obtained directly from the lattices of the constituent phases, this enabling one to pattern relevant connections to the environmental resistance of oxide-based bioceramics. A highly fracture resistant alumina/zirconia composite represents the latest trend in ceramics for arthroplastic applications in alternative to monolithic alumina or zirconia ceramics. This composite material is designed from both chemical and microstructural viewpoints in order to prevent environmental degradation and fracture events in vivo, an important step forward in the full exploitation of ceramic materials in the field of arthroplasty. Systematically monitoring the optical activity of oxygen vacancies in both alumina and zirconia phase reveals the distinct role on the kinetics of polymorphic transformation. From the presented data an explicit role is evinced for oxygen vacancy formation in the alumina matrix in the complex cascade of mechanochemical events determining the environmental resistance of the composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

240-246

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Chevalier, B. Cales and J. M. Drouin: J. Am. Ceram. Soc., Vol. 82 (1999) p.2150.

Google Scholar

[2] F. F. Lange, G. L. Dunlop and B. I. Davis: J. Am. Ceram. Soc. Vol. 69 (1986), p.237.

Google Scholar

[3] T. Sato, S. Ohteki and T. Endo in: Science and Technology of Zirconia III, edited by S. Somiya, N. Yamamoto, and H. Yanagida, volume 24 of Advances in Ceramics, The American Ceramic Society, Westerville, OH (1988).

Google Scholar

[4] M. Yoshimura: Am. Ceram. Soc. Bull. Vol. 67 (1988) p.950.

Google Scholar

[5] D. -J. Kim, H. -J. Jung, J. -W. Jang and H. -L. Lee: J. Am. Ceram . Soc. Vol. 81 (1988) p.2309.

Google Scholar

[6] S. Deville, J. Chevalier, C. H. Dauvergne, G. Fantozzi, J. F. Bartolome and J. S. Moya: J. Am. Ceram. Soc. Vol. 88 (2005), p.1273.

Google Scholar

[7] J. Chevalier, S. Grandjean, M. Kuntz and G. Pezzotti: Biomater Vol. 30 (2009), p.5279.

Google Scholar

[8] G. Pezzotti, M. C. Munisso, K. Lessnau and W. Zhu: to be published on J. Biomed. Mater. Res.: Part B, Appl. Biomater. (2010).

Google Scholar

[9] G. Pezzotti, W. Zhu, A. Leto, A. Matsutani and A. A. Porporati: J. Phys. D: Appl. Phys. Vol. 39 (2006), p.4975.

Google Scholar

[10] M. Kuntz: Semin. Arthroplasty Vol. 17 (2006), p.14.

Google Scholar

[11] J. Xu, H. K. Mao and P. M. Bell: Science Vol. 232 (1986), p.1404.

Google Scholar

[12] K. H. Lee and J. H. Crawford: Phys. Rev. B Vol. 19 (1979), p.3217.

Google Scholar

[13] B. G. Draeger and G. P. Summers: Phys. Rev. B Vo. 19 (1979), p.1172.

Google Scholar

[14] P. Jonnard, C. Bonnelle, G. Blaise, G. Remond and C. Roques-Carmes: J. Appl. Phys. Vol. 88 (2000), p.6413.

Google Scholar

[15] N. G. Petrik, D. P. Taylor and T. M. Orlando: J. Appl. Phys. Vol. 85 (1999), p.6770.

Google Scholar

[16] K. Smits, D. Millers, L. Grigorjeva, J. D. Fidelus and W. Łojkowski: J. Phys.: Conf. Series Vol. 93 (2007), pp.012035-1.

Google Scholar

[17] K. Smits, L. Grigorjeva, W. Łojkowski and J. D. Fidelus: phys. stat. sol. (c) Vol. 4 (2007), p.770.

Google Scholar

[18] M. Kirm, J. Aarik, M. Juergens and I. Sildos: Nucl. Instrum. Methods Vol. A537 (2005), p.251.

Google Scholar

[19] H. Nakajima and T. Mori: J. Alloys Compd. Vol. 408-412 (2006), p.728.

Google Scholar

[20] E. Gaudry, A. Kiratisin, P. Sainctavit, C. Brouder, F. Mauri and A. Ramos: Phys. Rev. B Vol. 67 (2003), pp.094108-1.

Google Scholar

[21] V. Shapovalov and T. N. Truong: J. Phys. Chem. B Vol. 104 (2000), p.9859.

Google Scholar

[22] E. M. Fernandez, R. I. Eglitis, G. Borstel and L. C. Balbas: Computational Mater. Sci. Vol. 39 (2007), p.587.

Google Scholar

[23] A. Zecchina, E. Guglielminotti, L. Cerruti and S. Coluccia: J. Phys. Chem. Vol. 75 (1971), p.2774.

Google Scholar

[24] M. C. Munisso, W. Zhu and G. Pezzotti: J. Phys. Chem. A Vol. 11 (2007), p.3526.

Google Scholar

[25] X. Guo: Solid State Ionics Vol. 112 (1998), p.113.

Google Scholar

[26] H. Schubert and F. Frey: J. Eur. Ceram. Soc. Vol. 25 (2005), p.1597.

Google Scholar

[27] J. F. Bartolome, G. Bruno and A. H. De Aza: J. Eur. Ceram. Soc. Vol. 28 (2008), p.1809.

Google Scholar

[28] G. Pezzotti, T. Saito, G. Padeletti, P. Cossari and K. Yamamoto: J. Orthop. Res. DOI: 10. 1002/jor. 21069.

Google Scholar

[29] G. Stefanic, S. Popovica and S. Music: Mater. Lett. Vol. 36 (1998), p.240.

Google Scholar

[30] A. M. Korduban, I. A. Yashchishyn, T. E. Konstantinova, I. A. Danilenko, G. K. Volkova and V. A. Glazunova: Functional Mater. Vol. 14 (2007), p.454.

Google Scholar