Inorganic Nanoparticles for either Charge Storage or Memristance Modulation

Article Preview

Abstract:

We present prototype memory devices using metallic and metal oxide nanoparticles obtained by a physical deposition technique. The two memory device examples demonstrated concern the use of platinum nanoparticles for flash-type memories and the use of titanium oxide nanoparticles for resistive memories. Both approaches give interesting device memory properties with resistive memories being still in an early exploratory phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

196-204

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Martijn H. R. Lankhorst, Bas W. S. M. M. Ketelaars & R. A. M. Wolters, Low-cost and nanoscale non-volatile memory concept for future silicon chips, Nature materials, vol. 4, pp.347-352, (2005).

DOI: 10.1038/nmat1350

Google Scholar

[2] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein & E. F. Crabbe, A silicon nanocrystals based memory, Appl. Phys. Lett., vol. 68, pp.1377-1379, (1996).

DOI: 10.1063/1.116085

Google Scholar

[3] L. O. Chua, Memristor-The missing circuit element, IEEE Trans. Circuit Theory, vol. 18, p.507–519 (1971).

DOI: 10.1109/tct.1971.1083337

Google Scholar

[4] J. J. Yang et al, Memristive switching mechanism for metal/oxide/metal nanodevices, Nature Nanotechnol., vol. 3, p.429–433 (2008).

Google Scholar

[5] Y. Fujisaki, Current Status of Nonvolatile Semiconductor Memory Technology , Jap. J. Appl. Phys. 49 100001 (2010).

DOI: 10.1143/jjap.49.100001

Google Scholar

[6] R. Waser et al, Redox-Based Resistive Switching Memories –Nanoionic Mechanisms, Prospects, and Challenges, Adv. Mater. 21, 2632 (2009).

DOI: 10.1002/adma.200900375

Google Scholar

[7] S.S. Nonnenmann, E.M. Gallo and J.E. Spaniera, Redox-based resistive switching in ferroelectric perovskite nanotubes, Appl. Phys. Lett. 97, 102904 (2010).

DOI: 10.1063/1.3486224

Google Scholar

[8] P.Y. Lai and J.S. Chen, Ultrahigh ON/OFF-Current Ratio for Resistive Memory Devices With Poly(N-Vinylcarbazole) / Poly(3, 4-Ethylenedioxythiophene) – Poly(Styrenesulfonate) Stacking Bilayer, IEEE El. Dev. Lett., 32, 3 (2011).

DOI: 10.1109/led.2010.2099102

Google Scholar

[9] B. O'Reagan and M. Gratzel A low cost high efficiency solar cell based on dye-sensitized TiO2 colloidal films, Nature 353, 737 (1991).

DOI: 10.1038/353737a0

Google Scholar

[10] R. Sardar, A. M. Funston, P. Mulvaney, R. W. Murray, Gold Nanoparticles: Past, Present, and Future, Langmuir, 2009, 25 (24), 13840–13851.

DOI: 10.1021/la9019475

Google Scholar

[11] C. N. Ramachandra Rao, Giridhar U. Kulkarni, P. John Thomasa, Peter P. Edwards, Metal nanoparticles and their assemblies, Chem. Soc. Rev., 2000, 29, 27-35.

Google Scholar

[12] J. Turkevich, P. C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday. Soc. 1951, 11, 55-75.

DOI: 10.1039/df9511100055

Google Scholar

[13] J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, A. Plech, Turkevich Method for Gold Nanoparticle Synthesis Revisited, J. Phys. Chem. B 2006, 110, 15700-15707.

DOI: 10.1021/jp061667w

Google Scholar

[14] G. Frens, Particle size and sol stability in metal colloids, Colloid & Polymer Science 1972, 250, 736-741.

DOI: 10.1007/bf01498565

Google Scholar

[15] G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nature, Phys. Sci. 1973, 241, 20-22.

DOI: 10.1038/physci241020a0

Google Scholar

[16] M. Brust; M. Walker; D. Bethell; D. J. Schiffrin; R. Whyman (1994). Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System,. Chem. Commun.

DOI: 10.1039/c39940000801

Google Scholar

[17] Manna, A.; Chen, P.; Akiyama, H.; Wei, T.; Tamada, K.; Knoll, W. Optimized Photoisomerization on Gold Nanoparticles Capped by Unsymmetrical Azobenzene Disulfides,. Chem. Mater. (2003). 15 (1): 20–28.

DOI: 10.1021/cm0207696

Google Scholar

[18] S. Kolliopoulou et al., Microelectronic Engineering 73–74 (2004) 725–729.

Google Scholar

[19] C. Sargentis et al., Physica E 38 (2007) 85–88.

Google Scholar

[20] D. Panda et al., Electrochemical and Solid-State Letters, 12 (1) H7-H10 (2009).

Google Scholar

[21] www. mantisdeposition. com.

Google Scholar

[22] E. Quesnel et al., J. Appl. Phys. 107, 054309 (2010).

Google Scholar

[23] E. Verrelli, D. Tsoukalas, Optimization of Hafnium oxide for use in nanoparticle memories, Microelectronic Engineering, Volume 88, Issue 7 (2011) Pages 1189-1193.

DOI: 10.1016/j.mee.2011.03.074

Google Scholar

[24] J. Tang, E. Verrelli and D Tsoukalas, Assembly of charged nanoparticles using self-electrodynamic focusing, Nanotechnology 20, 365605 (2009).

DOI: 10.1088/0957-4484/20/36/365605

Google Scholar

[25] J.J. Yang et al, The mechanism of electroforming of metal oxide memristive switches, Nanotechnology, 20, 215201 (2009).

Google Scholar