Memory Effect of a Different Materials as Charge Storage Elements for Memory Applications

Article Preview

Abstract:

In recent years, the interest in the application of organic materials in electronic devices (light emitting diodes, field effect transistors, solar cells), has shown a rapid increase. Polymer memory devices (PDMs) is a very recent addition to the organic electronics. The polymer memory devices can be fabricated by depositing a blend (an admixture of organic polymer, small organic molecules and metal or semiconductor nanoparticles) between two metal electrodes. We demonstrate the memory effect in the device with simple structure based on blend of polymer with different materials like ionic compound (NaCl), ferroelectrical nano-particles (BaTiO3) and small organic molecules In 2007 Paul has proposed a model to explain memory effect a switching between two distinctive conductivity states when voltage is applied based on electrical dipole formation in the polymer matrix. Here, we investigate if our memory devices based on different types of materials are fitted with the proposed model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

205-208

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Tang, C.W. and S.A. Vanslyke, Applied Physics Letters, 51(12) (1987) 913-915.

Google Scholar

[2] Garnier, F. et al., Science, 265(5179) (1994) 1684-1686.

Google Scholar

[3] Yu, G. et al, . Science, 270(5243) (1995) 1789-1791.

Google Scholar

[4] S. Paul, A. Kanwal, M. Chhowalla, Nanotechnology, 17 (2006) 145.

Google Scholar

[5] J. Ouyang, C-W Chu, C. R. Szmanda, L. Ma, Y. Yang, Nature Materials 3, (2004) 918 - 922.

Google Scholar

[6] L. Ma, S. Pyo, J. Ouyang, Q.F. Xu and Y. Yang, Appl. Phys. Lett. 82 (2003) 1419–1421.

Google Scholar

[7] L.D. Bozano B.W. Kean, V.R. Deline, J.R. Salem, J.C. Scott, Appl. Phys. Lett. 84 (2004) 607–609.

DOI: 10.1063/1.1643547

Google Scholar

[8] S. Paul, C. Pearson, A. Mollly, M. A. Causins, M. Green, S. Kolliopoulou, P. Dimitrakis, P. Normand, D. Tsoukalas, M. C. Petty, Nano Letters 3 (2003) 533-536.

DOI: 10.1021/nl034008t

Google Scholar

[9] S. Kolliopoulou, P. Dimitrakis, P. Normad, H. L. Zhang, N. Cant, S.D. Evans, S. Paul, C. Pearson, A. Molloy, M.C. Petty, D. Tsoukalas, J. Appl. Phys. 94 (2003) 5234-5239.

DOI: 10.1063/1.1604962

Google Scholar

[10] D. Prime, S. Paul, Phil. Trans.R. Soc. A 367 (2009) 4141-4157.

Google Scholar

[11] Q.D. Ling, D.J. Liaw, C. Zhu, D.S.H. Chan, E.T. Kang, K.G. Neoh, Prog. in Polymer Science, 33 (2008) 917-978.

Google Scholar

[12] Q.D. Ling, D.J. Liaw, E.Y.H. Teo, C. Zhu, D.S.H. Chan, E.T. Kang, K.G. Neoh, Polymer, 48 (2007) 5182-5201.

DOI: 10.1016/j.polymer.2007.06.025

Google Scholar

[13] D. Prime and S. Paul, Mater. Res. Soc. Symp. Proc., 0997-I03-01, (2007).

Google Scholar

[14] D. Prime and S. Paul, Appl. Phys. Lett., 96 (2010) 043120.

Google Scholar

[15] C.W. Chu, J. Ouyang, J.H. Tseng, Y. Yang, Adv. Mater., 17 (2005) 1440.

Google Scholar

[16] Y. Yang, J. Ouyang, L. Ma, J.H. Tseng, C.W. Chu, Adv. Funct. Mater., 16 (2006) 1001-1014.

Google Scholar

[17] J. Ouyang, C.W. Chu, R.J.H. Tseng, A. Prakash, Y. Yang, Proceedings of the IEEE, 93 (2005) 1287-1296.

Google Scholar

[18] Y. Segui, B. Ai, H. Carchano, J. Appl. Phys., 47 (1976) 140.

Google Scholar

[19] H.K. Henish, W.R. Smith, Appl. Phys. Lett., 24 (1974) 589.

Google Scholar

[20] L.D. Bozano, B.W. Kean, M. Beinhoff, K.R. Carter, J.C. Scott, Adv. Funct. Mater., 15 (2005) (1933).

Google Scholar

[21] A. Prakash, J. Quyang, J.L. Lin, Y. Yang, J. Appl. Phys., 100 (2006) 054309.

Google Scholar

[22] W. Wang, T. Lee, M.A. Reed, Phys. Rev. B, 68 (2003) 035416.

Google Scholar

[23] C. Scott, L.D. Bozano, Adv. Mater., 19 (2007) 1452-1463.

Google Scholar

[24] Shashi Paul, IEEE Transactions on Nanotechnology, 6 (2007) 191.

Google Scholar

[25] D.A. Clemente, A. Marzotto, J. Mater. Chem. 6 (6) (1996) 941.

Google Scholar

[26] M. Meneghetti, C. Pecille, J. Chem. Phys. 105 (2) (1996) 397.

Google Scholar

[27] M. Meneghetti, C. Pecile, Synth. Met. 86 (1997) (2037).

Google Scholar

[28] D.A. Clemente, C. Pecile, Mol. Cryst. Liq. Cryst. 121 (1–4) (1985) 397.

Google Scholar

[29] I. Salaoru, S. Paul, Adv. Sci. Technol. 54 (2008) 486.

Google Scholar