Magnetoelectric Properties in Nickel Ferrite – Niobate Relaxor Bulk Composites

Article Preview

Abstract:

Magnetoelectric effect in multiferroic materials is widely studied for its fundamental interest and practical applications. The magnetoelectric effect observed for single phase materials like Cr2O3, BiFeO3, Pb(Fe0.5Nb0.5)O3 is usually small. A much larger effect can be obtained in composites consisting of magnetostrictive and piezoelectric phases. This paper investigates the magnetostrictive and magnetoelectric properties of nickel ferrite Ni0.3Zn0.62Cu0.08Fe2O4 - relaxor Pb(Fe0.5Nb0.5)O3 bulk composites. The magnetic properties of composites shows a dependence typical of such composite materials, i.e. it consists of a dominating signal from ferrimagnetic phase (ferrite) and a weak signal from paramagnetic (antiferromagnetic) phase (relaxors). Magnetoelectric effect at room temperature was investigated as a function of static magnetic field (300-7200 Oe) and frequency (10 Hz-10 kHz) of sinusoidal modulation magnetic field. The magnetoelectric effect increase slightly before reaching a maximum at HDC = 750 Oe and then decrease. The magnetoelectric coefficient increases continuously as frequency is raised, although this increase is less pronounced in the 1-10 kHz range.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

215-219

Citation:

Online since:

September 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Fiebig, J. Phys. D: Appl. Phys. Vol. 38, (2005), p. R123.

Google Scholar

[2] R. Grössinger, G.V. Duong, R. Sato-Turtelli, J. Magn. Magn. Mater. Vol. 320, (2008), p. (1972).

Google Scholar

[3] Y.K. Fetisov, K.E. Kamentsev, A.Y. Ostashchenko, J. Magn. Magn. Mater. Vol. 272-276, (2004), p. (2064).

Google Scholar

[4] C.M. Kanamadi, J.S. Kim, H.K. Yang, B.K. Moon, B.C. Choi, J.H. Jeong, J. Alloys Compd. Vol. 481, (2009), p.781.

Google Scholar

[5] Y.J. Li, X.M. Chen, Y.Q. Lin, Y.H. Tang, J. Eur. Ceram. Soc. Vol. 26, (2006), p.2839.

Google Scholar

[6] J. Kulawik, P. Guzdek, D. Szwagierczak, A. Stoch, Comps. Struct. Vol. 92, (2010), p.2153.

Google Scholar

[7] P. Guzdek, M. Sikora, Ł. Góra, Cz. Kapusta, J. Eur. Ceram. Soc. Vol. 32, (2012), p. (2007).

Google Scholar

[8] M. Venkata Ramanaa, N. Ramamanohar Reddy, G. Sreenivasulu, K.V. Siva Kumar, B.S. Murty, V.R.K. Murthy, Cur. Appl. Phys. Vol. 9, (2009), p.1134.

DOI: 10.1016/j.cap.2009.01.002

Google Scholar

[9] S.A. Solopan, O.I. V'yunow, A.G. Belous, A.I. Tovstolytkin, L.L. Kovalenko, J. Eur. Ceram. Soc. Vol. 30, (2010), p.259.

Google Scholar

[10] V. Corral-Flores, D. Bueno-Baqués, R.F. Ziolo, Acta Mater. Vol. 58 (2010) p.764.

Google Scholar

[11] C. -S. Park, C. -W. Ahn, J. Ryu, W. -H. Yoon, D. -S. Park, H. -E. Kim, S. Priya, J. Appl. Phys. Vol. 105, (2009), p.094111.

Google Scholar

[12] D. Bochenek, P. Guzdek, J. Magn. Magn. Mater. Vol. 323, (2011), p.369.

Google Scholar

[13] P. Guzdek, J. Kulawik, K. Zaraska, A. Bieńkowski, J. Magn. Magn. Mater. Vol. 322, (2010), p.2897.

Google Scholar

[14] S.A. Ivanov, P. Nordblad, R. Tellgren, T. Ericsson, H. Rundlof, Solid State Sci. Vol. 9, (2007), p.440.

DOI: 10.1016/j.solidstatesciences.2007.03.018

Google Scholar

[15] G. Ranga Mohan, D. Ravinder, A.V. Ramana Reddy, B.S. Boyanov, Mater. Lett. Vol. 40, (1999), p.39.

Google Scholar

[16] Hua Su, Huaiwu Zhang, Xiaoli Tang, Xinyuan Xiang, J. Magn. Magn. Mater. Vol. 283, (2004), p.157.

Google Scholar

[17] G.M. Rotaru, B. Roessli, A. Amato, S.N. Gvasaliya, C. Mudry, S.G. Lushnikov, T.A. Shaplygina, Phys. Rev. B Vol. 79, (2009), p.184430.

Google Scholar

[18] U. Laletsin, N. Padubnaya, G. Srinivasan, C.P. Devreugd, Appl. Phys. A Vol. 78, (2004), p.33.

Google Scholar