Design of a Solid State Shape-Memory-Actuator with Guidance Functionality

Article Preview

Abstract:

Machine tools for small work pieces are characterized by an extensive disproportion between workspace and cross section. This is mainly caused by limitations in the miniaturization of drives and guidance elements. Due to their high specific workloads and relatively small spatial requirements, Thermal Shape-Memory-Alloys (SMA) possess an outstanding potential to serve as miniaturized drives in small machines. However, most of the known SMA drive applications necessitate additional guidance elements to realize a certain mechanical stiffness. In this paper we present a novel SMA actuator design, which does rather not require an additional guidance. The stiffness in directions different from the actuators moving direction is realized by a specific arrangement of the SMA elements. Those are designed regarding geometry, applied load, and control aspects. Furthermore, a sample actuator is built to investigate the capabilities to serve as miniaturized feed axis in small machines.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-118

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. P. Wulfsberg, S. Grimske, P. Kohrs, N. Kong, Kleine Werkzeugmaschinen für kleine Werkstücke, wt-Werkstattstechnik online Jahrgang 100, 2010, H. 11/12.

DOI: 10.37544/1436-4980-2010-11-12-886

Google Scholar

[2] S. T. Smith, R: M. Seugling, Sensor and actuator considerations for precision, small machines, Precision Engineering 30, 2008, pp.245-264.

DOI: 10.1016/j.precisioneng.2005.10.003

Google Scholar

[3] P. A. Besselink, Procedure for the Calculation of the Geometry of a Resistance Heated NiTi-Actuator, Proceedings of the 5th International Conference on New Actuators, (1996).

Google Scholar

[4] M. Mertmann, NiTi-Formgedaechtnislegierungen fuer Aktoren der Greifertechnik, VDI Verlag, Fortschrittsbericht VDI Reihe 5 Nr. 469, Duesseldorf, (1997).

Google Scholar

[5] D. C. Lagoudas (Ed. ), Shape Memory Alloys: Modeling and Engineering Applications, Springer Science+Business Media, New York, (2008).

Google Scholar

[6] A. Czechowicz, H. Meier, S. Dilthey, Regeln von FG-Legierungen mit Widerstandsrückkopplung, Mechatronik, 11-12/2008, 2008, pp.24-27.

Google Scholar

[7] F. Schiedeck, Entwicklung eines Models für Formgedächtnisaktoren im geregelten dynamischen Betrieb, Doctoral Thesis, Leibnitz Universität Hannover, (2009).

Google Scholar

[8] A. Y. Sofla, D. M. Elzey, H. N. Wadley, Two-way Antagonistic Shape Actuation Based on the One-way Shape Memory Effect, Journal of Intelligent Material Systems and Structures, Vol. 00, 2007, pp.1-12.

DOI: 10.1177/1045389x07083026

Google Scholar

[9] M. Kohl, Entwicklung von Mikroaktoren aus Formgedächtnislegierungen, Postdoctoral Thesis, Forschungszentrum Karlsruhe, 2002 , pp.205-217.

Google Scholar

[10] A. Dhanorker, T. Özel: Meso/micro scale milling for micro-manufacturing, International Journal of Mechatronics and Manufacturing Systems 1, 2008, p.23–42.

DOI: 10.1504/ijmms.2008.018273

Google Scholar

[11] R. Neugebauer, W. -G. Drossel, K. Pagel, A. Bucht, N. Anders: Design of a Controllable Shape-Memory-Actuator with Mechanical Lock Function; SPIE Proceedings, (2011).

DOI: 10.1117/12.880719

Google Scholar

[12] J. A. Redmond, D. Brei, J. Luntz, A. L. Browne, N. L. Johnson, Spool-packaging of shape memory alloy actuators: Performance model and experimental validation, Journal of Intelligent Material Systems and Structures, Vol. 23(2), 2011, pp.201-219.

DOI: 10.1177/1045389x11431742

Google Scholar

[13] US 2004/0256920 A1.

Google Scholar