[1]
M.F. Ashby, A. Evans, N.A. Fleck, L. Gibson, J.W. Hutchinson, H. Wadley, Metal Foams: A Design Guide, Butterworth-Heinemann, Boston, (2000).
DOI: 10.1016/b978-075067219-1/50001-5
Google Scholar
[2]
J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Progr. Mat. Sci. 46 (2001) 559.
DOI: 10.1016/s0079-6425(00)00002-5
Google Scholar
[3]
H.N.G. Wadley, Cellular metals manufacturing, Adv. Eng. Mat. 4 (2002) 726.
Google Scholar
[4]
J.F. Despois, A. Marmottant, L. Salvo, A. Mortensen, Influence of the infiltration pressure on the structure and properties of replicated aluminium foams, Mat. Sci. Eng. A 462 (2007) 68.
DOI: 10.1016/j.msea.2006.03.157
Google Scholar
[5]
F.J. Gil, J.M. Guilemany, Effect of cobalt addition on grain growth kinetics in Cu-Zn-Al shape memory alloy, Intermetallics 6(5), 1997, pp.445-450.
DOI: 10.1016/s0966-9795(97)00090-3
Google Scholar
[6]
J. Banhart, Manufacture, Characterization and Application of Cellular Metals and Metal Foams, Prog. Mater. Sci., 2001, 46, pp.559-632.
DOI: 10.1016/s0079-6425(00)00002-5
Google Scholar
[7]
E.M. Castrodeza, C. Mapelli, Italian Industrial Patent Process MO 2008 A 166 (in progress).
Google Scholar
[8]
A. Pollien, Y. Conde, L. Pambaguian, A. Mortensen, Graded open-cell aluminium foam core sandwich beams, Mat. Sci. Eng. A 404 (2005) 9.
DOI: 10.1016/j.msea.2005.05.096
Google Scholar
[9]
C. Gaillard, J.F. Despois, A. Mortensen, Processing of NaCl powders of controlled size and shape for the microstructural tailoring of aluminium foams, Mat. Sci. Eng A 374 (2004) 250.
DOI: 10.1016/j.msea.2004.03.015
Google Scholar
[10]
A.H. Brothers, R. Scheunemann, J.D. DeFouw, D. Dunand, Processing and structure of open-celled amorphous metal foams, Scripta Mat. 52 (2005) 335.
DOI: 10.1016/j.scriptamat.2004.10.002
Google Scholar
[11]
H. Funakubo: Shape memory alloys Gordon and Breach Publisher, (1984).
Google Scholar
[12]
K. Otsuka, C.M. Wayman: Shape Memory Materials, Cambridge University Press, (1998).
Google Scholar
[13]
M. Stipcich, R. Romero, The effect of Ti-B on stabilization of Cu-Zn-Al martensite, Mat. Sci. Eng. A273-275 (1999) 581-585.
DOI: 10.1016/s0921-5093(99)00433-5
Google Scholar
[14]
J.L. Pelegrina, M. Ahlers, Stabilization and ferroelasticity in Cu-Zn based martensites, Script. Mat. 50 (2004) 213-218.
DOI: 10.1016/j.scriptamat.2003.09.022
Google Scholar
[15]
M. Ahlers, Stability of martensite in noble metal alloys, Mat. Sci. Eng A 349(2003) 120-131.
Google Scholar
[16]
K. Otsuka, X. Ren, Mechanism of martensite aging effect, Script. Mat 50 (2004) 207-212.
Google Scholar
[17]
S. Kustov, J. Pons, E. Cesari, Pinning-induced stabilization of martensite - Part II. Kinetic stabilization in Cu-Zn-Al alloy due to pinning of moving interfaces, Acta Mater. 52(2004) 3083-3096.
DOI: 10.1016/j.actamat.2004.03.010
Google Scholar
[18]
Y. Nakata, O. Yamamoto, K. Shimizu, EFFECT OF AGING IN CU-ZN-AL SHAPE-MEMORY ALLOYS, Mat. Trans. JIM, 5 (1993) 429-437.
DOI: 10.2320/matertrans1989.34.429
Google Scholar
[19]
C.A. Biffi, P. Bassani, A. Tuissi, M. Carnevale, N. Lecis, A. LoConte, B. Previtali, Flexural Vibration Suppression of Glass Fiber/CuZnAl SMA Composite, Functional Material Letters Vol. 5 N. 1 (2012) 1250014.
DOI: 10.1142/s1793604712500142
Google Scholar
[20]
F.J. Gill, J.M. Guilemany, Inter. 6 (1998) 445-450.
Google Scholar
[21]
J. Garcia R., Script. Mat 42(2000) 531-536.
Google Scholar
[22]
F.J. Gill, J.M. Guilemany, J. Fernandez, Mat. Sci. Eng A241 (1998) 114-121.
Google Scholar
[23]
E.M. Castrodeza, C. Mapelli, M. Vedani, S. Arnaboldi, P. Bassani, A. Tuissi, Processing of shape memory CuZnAl open-cell foam by molten metal infiltration, JMEPEG (2009) 18: 484-489.
DOI: 10.1007/s11665-009-9398-6
Google Scholar
[24]
S. Arnaboldi, P. Bassani, F. Passaretti, A. Redaelli, A. Tuissi, Functional Characterization of shape memory CuZnAl open-cell foams by molten metal infiltration, JMEPEG (2011) 20: 544-550.
DOI: 10.1007/s11665-011-9878-3
Google Scholar
[25]
A.J. Matheson, Computation of a random packing of hard spheres, J Phys C Solid State Phys, 1974, 7(15), pp.2569-2576.
DOI: 10.1088/0022-3719/7/15/007
Google Scholar
[26]
G. Bertolino, P. Arnedo Larochette, E.M. Castrodeza, C. Mapelli, A. Baruji, H.E. Troiani, Mechanical properties of martensitic Cu-Zn-Al foams in the pseudoelastic regime, Materials Letters 64 (2010), 1448-1450.
DOI: 10.1016/j.matlet.2010.03.052
Google Scholar