CuZnAl Shape Memory Alloys Foams

Article Preview

Abstract:

Foams and other highly porous metallic materials with cellular structures are known to have many interesting combinations of physical and mechanical properties. That makes these systems very attractive for both structural and functional applications. Cellular metals can be produced by several methods including liquid infiltration of leachable space holders. In this contribution, results on metal foams of Cu based shape memory alloys (SMAs) processed by molten metal infiltration of SiO2 particles are presented. By using this route, highly homogeneous CuZnAl SMA foams with a spherical open-cell morphologies have been manufactured and tested. Morphological, thermo-mechanical and cycling results are reported.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-39

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.F. Ashby, A. Evans, N.A. Fleck, L. Gibson, J.W. Hutchinson, H. Wadley, Metal Foams: A Design Guide, Butterworth-Heinemann, Boston, (2000).

DOI: 10.1016/b978-075067219-1/50001-5

Google Scholar

[2] J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Progr. Mat. Sci. 46 (2001) 559.

DOI: 10.1016/s0079-6425(00)00002-5

Google Scholar

[3] H.N.G. Wadley, Cellular metals manufacturing, Adv. Eng. Mat. 4 (2002) 726.

Google Scholar

[4] J.F. Despois, A. Marmottant, L. Salvo, A. Mortensen, Influence of the infiltration pressure on the structure and properties of replicated aluminium foams, Mat. Sci. Eng. A 462 (2007) 68.

DOI: 10.1016/j.msea.2006.03.157

Google Scholar

[5] F.J. Gil, J.M. Guilemany, Effect of cobalt addition on grain growth kinetics in Cu-Zn-Al shape memory alloy, Intermetallics 6(5), 1997, pp.445-450.

DOI: 10.1016/s0966-9795(97)00090-3

Google Scholar

[6] J. Banhart, Manufacture, Characterization and Application of Cellular Metals and Metal Foams, Prog. Mater. Sci., 2001, 46, pp.559-632.

DOI: 10.1016/s0079-6425(00)00002-5

Google Scholar

[7] E.M. Castrodeza, C. Mapelli, Italian Industrial Patent Process MO 2008 A 166 (in progress).

Google Scholar

[8] A. Pollien, Y. Conde, L. Pambaguian, A. Mortensen, Graded open-cell aluminium foam core sandwich beams, Mat. Sci. Eng. A 404 (2005) 9.

DOI: 10.1016/j.msea.2005.05.096

Google Scholar

[9] C. Gaillard, J.F. Despois, A. Mortensen, Processing of NaCl powders of controlled size and shape for the microstructural tailoring of aluminium foams, Mat. Sci. Eng A 374 (2004) 250.

DOI: 10.1016/j.msea.2004.03.015

Google Scholar

[10] A.H. Brothers, R. Scheunemann, J.D. DeFouw, D. Dunand, Processing and structure of open-celled amorphous metal foams, Scripta Mat. 52 (2005) 335.

DOI: 10.1016/j.scriptamat.2004.10.002

Google Scholar

[11] H. Funakubo: Shape memory alloys Gordon and Breach Publisher, (1984).

Google Scholar

[12] K. Otsuka, C.M. Wayman: Shape Memory Materials, Cambridge University Press, (1998).

Google Scholar

[13] M. Stipcich, R. Romero, The effect of Ti-B on stabilization of Cu-Zn-Al martensite, Mat. Sci. Eng. A273-275 (1999) 581-585.

DOI: 10.1016/s0921-5093(99)00433-5

Google Scholar

[14] J.L. Pelegrina, M. Ahlers, Stabilization and ferroelasticity in Cu-Zn based martensites, Script. Mat. 50 (2004) 213-218.

DOI: 10.1016/j.scriptamat.2003.09.022

Google Scholar

[15] M. Ahlers, Stability of martensite in noble metal alloys, Mat. Sci. Eng A 349(2003) 120-131.

Google Scholar

[16] K. Otsuka, X. Ren, Mechanism of martensite aging effect, Script. Mat 50 (2004) 207-212.

Google Scholar

[17] S. Kustov, J. Pons, E. Cesari, Pinning-induced stabilization of martensite - Part II. Kinetic stabilization in Cu-Zn-Al alloy due to pinning of moving interfaces, Acta Mater. 52(2004) 3083-3096.

DOI: 10.1016/j.actamat.2004.03.010

Google Scholar

[18] Y. Nakata, O. Yamamoto, K. Shimizu, EFFECT OF AGING IN CU-ZN-AL SHAPE-MEMORY ALLOYS, Mat. Trans. JIM, 5 (1993) 429-437.

DOI: 10.2320/matertrans1989.34.429

Google Scholar

[19] C.A. Biffi, P. Bassani, A. Tuissi, M. Carnevale, N. Lecis, A. LoConte, B. Previtali, Flexural Vibration Suppression of Glass Fiber/CuZnAl SMA Composite, Functional Material Letters Vol. 5 N. 1 (2012) 1250014.

DOI: 10.1142/s1793604712500142

Google Scholar

[20] F.J. Gill, J.M. Guilemany, Inter. 6 (1998) 445-450.

Google Scholar

[21] J. Garcia R., Script. Mat 42(2000) 531-536.

Google Scholar

[22] F.J. Gill, J.M. Guilemany, J. Fernandez, Mat. Sci. Eng A241 (1998) 114-121.

Google Scholar

[23] E.M. Castrodeza, C. Mapelli, M. Vedani, S. Arnaboldi, P. Bassani, A. Tuissi, Processing of shape memory CuZnAl open-cell foam by molten metal infiltration, JMEPEG (2009) 18: 484-489.

DOI: 10.1007/s11665-009-9398-6

Google Scholar

[24] S. Arnaboldi, P. Bassani, F. Passaretti, A. Redaelli, A. Tuissi, Functional Characterization of shape memory CuZnAl open-cell foams by molten metal infiltration, JMEPEG (2011) 20: 544-550.

DOI: 10.1007/s11665-011-9878-3

Google Scholar

[25] A.J. Matheson, Computation of a random packing of hard spheres, J Phys C Solid State Phys, 1974, 7(15), pp.2569-2576.

DOI: 10.1088/0022-3719/7/15/007

Google Scholar

[26] G. Bertolino, P. Arnedo Larochette, E.M. Castrodeza, C. Mapelli, A. Baruji, H.E. Troiani, Mechanical properties of martensitic Cu-Zn-Al foams in the pseudoelastic regime, Materials Letters 64 (2010), 1448-1450.

DOI: 10.1016/j.matlet.2010.03.052

Google Scholar