Theoretical Study of Magnetic Properties and Twin Boundary Motion in Heusler Ni-Mn-X Shape Memory Alloys Using First Principles and Monte Carlo Method

Article Preview

Abstract:

In this paper we firstly propose and study a microscopic model of twin boundary motion in the Heusler Ni-Mn-X (X= Ga, In, Sb, Sn) alloys on real tetragonal lattice using the first principles and Monte Carlo simulations. The two variants of the low temperature martensite which divided by twin boundary are considered. The Heisenberg model for magnetic subsystem and the Blume-Emery-Griffiths (BEG) one for structural subsystem with magnetostructural interaction between these subsystems are used. The influence of external magnetic field and anisotropy on the twin boundary motion is studied. It is shown that proposed model gives the picture of twin boundary motion as in experiments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-12

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Planes, L. Mañosa, and M. Acet, Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys J. Phys.: Condens. Matter 21 (2009) 233201.

DOI: 10.1088/0953-8984/21/23/233201

Google Scholar

[2] K. Ullakko, I. Aaltio, P. Yakovenko, A. Sozinov, A.A. Likhachev and O. Heczko, Magnetic shape memory effect progress from idea to first actuators and sensors, J. Phys. IV France 11 (2001) Pr8-243.

DOI: 10.1051/jp4:2001841

Google Scholar

[3] H. Ebert, in Electronic Structure and Physical Properties of Solids, Lecture Notes in Physics Vol. 535, edited by H. Dreyssé (Springer, Berlin, 1999), p.191; Rep. Prog. Phys. 59 (1996) 1665.

Google Scholar

[4] T. Cástan, E. Vives, and P. -A. Lindgård, Modeling premartensitic effects in Ni2MnGa: A mean-field and Monte Carlo simulation study, Phys. Rev. B 60 (1999) 7071.

Google Scholar

[5] V. D. Buchelnikov, V. V. Sokolovskiy, H. C. Herper, H. Ebert, M. E. Gruner, S. V. Taskaev, V. V. Khovaylo, A. Hucht, A. Dannenberg, M. Ogura, H. Akai, M. Acet, and P. Entel, A First_Principles and Monte Carlo Study of Magnetostructural Transition and Magnetic Properties of Ni2 + xMn1 – xGa, Phys. Rev. B: Condens. Matter Phys. 81 (2010).

DOI: 10.1103/physrevb.81.094411

Google Scholar

[6] D.P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge Univesity Press, Cambridge, (2000).

Google Scholar

[7] F. Albertini, A. Paoluzi, L. Pareti, M. Solzi, L. Righi, E. Villa, S. Besseghini, and F. Passaretti, Phase transitions and magnetic entropy change in Mn-rich Ni2MnGa alloys, Journal of Applied Physics 100, (2006), 023908.

DOI: 10.1063/1.2218470

Google Scholar

[8] V.D. Buchelnikov, V.V. Sokolovskiy, S.V. Taskaev, V.V. Khovaylo, A.A. Aliev, L.N. Khanov, A.B. Batdalov, P. Entel, H. Miki and T. Takagi, Monte Carlo simulations of the magnetocaloric effect in magnetic Ni–Mn–X (X = Ga, In) Heusler alloys, J. Phys. D: Appl. Phys. 44, (2011).

DOI: 10.1088/0022-3727/44/6/064012

Google Scholar

[9] P. J. Webster, K. R. A. Ziebeck, S. L. Town, and M. S. Peak, Magnetic order and phase transformation in Ni2MnGa, Philos. Mag. B 49 (1984) 295.

Google Scholar

[10] Q. Pan, R.D. James, Micromagnetic study of Ni2MnGa under applied field, J. Appl. Phys. 87 (2000) 4702.

Google Scholar

[11] H.D. Chopra, C. Ji, V.V. Kokorin, Magnetic-field-indused twin boundary motion in magnetic shape-memory alloys, Phys. Rev. B 61 (2000) R14913.

DOI: 10.1103/physrevb.61.r14913

Google Scholar