Novel Bionic Biomembrane Supported by Gold Nanoparticles/Cellulose Hybrid Films

Article Preview

Abstract:

As one of the main methods to study biomembranes, the construction of highly active bionic biomembrane systems is very important. Based on the hybrid film of gold nanoparticles and cellulose, a novel system of bionic biomembrane is demonstrated. The ratio effects of lecithin to cholesterin on the stability of bilayer lipid membranes are studied. Lipid solutions that can form stable membranes in the air and in some aqueous solutions are prepared. The bionic biomembranes composed of bilayer lipid membranes and hybrid films of gold nanoparticles and cellulose can be sustained for a long period in aqueous solutions. The bionic biomembranes also exhibit some interesting electrochemical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-18

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Kerker, Editor, Surface Chemistry and Colloids, MTP International Review of Science, Butterworths, London, 1972, Series 2, Vol. 7, Chapters 1 and 2.

Google Scholar

[2] J. D. Robertson, Membrane structure, J. Cell Biol. 91 (1981) 189-204.

Google Scholar

[3] P. Mueller, D. O. Rudin, H. T. Tien, W. C. Wescott, Reconstitution of cell membrane structure in vitro and its transformation into an excitable system, Nature 194 (1962) 979-980.

DOI: 10.1038/194979a0

Google Scholar

[4] H. T. Tien, Self-assembled lipid bilayers for biosensors and molecular electronic devices, Adv. Mater. 2 (1990) 316-317.

DOI: 10.1002/adma.19900020611

Google Scholar

[5] A. L. Ottova, T. Martynski, A. Wardak, H. T. Tien, In Bridge Molecular Electronics and Bioelectronoics, Adv. Chem. Series, 240 (1994) 439.

Google Scholar

[6] X. D. Lu, A. L. Ottova, H.T. Tien, Biophysical aspects of agar-gel supported bilayer lipid membranes: A new method for forming and studying planar bilayer lipid membranes, Bioelectrochem. Bioenerg. 39 (1996) 285-289.

DOI: 10.1016/0302-4598(95)05039-6

Google Scholar

[7] M. Uto, M. Araki, T. Taniguehi, S. Hoshi, S. Inoue, Stability of an agar-supported bilayer lipid membrane and its application to a chemical sensor, Anal. Sci. 10 (1994) 943-946.

DOI: 10.2116/analsci.10.943

Google Scholar

[8] A. Wardak, H. T. Tien, Cyclic voltammetry studies of bilayer lipid membranes deposited on platinum by self assembly, Bioelectrochem. Bioenerg. 24 (1990) 1-11.

DOI: 10.1016/0302-4598(80)85001-x

Google Scholar

[9] H. T. Tien, Z. Salamon, Formation of self-assembled lipid bilayers on solid substrates, Bioelectrochemistry and Bioenergetics 22 (1989) 211-218.

DOI: 10.1016/0302-4598(89)87040-0

Google Scholar

[10] Z. Sa1mon, G. Tollin, Interfacial electrochemistry of cytochrome c at a lipid bilayer modified electrode: Effect of incorporation of negative charges into the bilayer on cyclic voltammetric parameters, Bioelectrochem. Bioenerg. 26 (1991) 321-334.

DOI: 10.1016/0302-4598(91)80033-y

Google Scholar

[11] C. G. Siontoroua, A. -M. Oliveira Brettb, D. P. Nikolelis, Evaluation of a glassy carbon electrode modified by a bilayer lipid membrane with incorporated DNA, Talanta 43 (1996) 1137-1144.

DOI: 10.1016/0039-9140(96)01881-4

Google Scholar

[12] L. A. Dykman, V. A. Bogatyrev, Gold nanoparticles: preparation, functionalisation and applications in biochemistry and immunochemistry, Russian Chemical Reviews 76 (2007) 181-194.

DOI: 10.1070/rc2007v076n02abeh003673

Google Scholar

[13] Xiuli Zhao, Xiaobin Ding, Zhenghua Deng, Zhaohui Zheng, Yuxing Peng, Xinping Long, Thermoswitchable Electronic Properties of a Gold Nanoparticle/Hydrogel Composite, Macromol. Rapid Commun. 26 (2005) 1784-1787.

DOI: 10.1002/marc.200500534

Google Scholar

[14] Sung Huh, Seung Bin Kim, Fabrication of Conducting Polymer Films Containing Gold Nanoparticles with Photo-Induced Patterning, J. Phys. Chem. C 114 (2010) 2880-2885.

DOI: 10.1021/jp908743y

Google Scholar

[15] A. Z. Ernst, S. Zoladek, K. Wiaderek, J. A. Cox, A. Kolary-Zurowska, K. Miecznikowski, P. J. Kulesza, Network films of conducting polymer-linked polyoxometalate-modified gold nanoparticles: Preparation and electrochemical characterization, Electrochimica Acta 53 (2008).

DOI: 10.1016/j.electacta.2007.12.053

Google Scholar

[16] F. P. Zamborini, M. C. Leopold, J. F. Hicks, P. J. Kulesza, M. A. Malik, R. W. Murray, Electron Hopping Conductivity and Vapor Sensing Properties of Flexible Network Polymer Films of Metal Nanoparticles, J. Am. Chem. Soc. 124 (2002) 8958-8964.

DOI: 10.1021/ja025965s

Google Scholar

[17] Junhui He, Toyoki Kunitake, Aiko Nakao, Facile In Situ Synthesis of Noble Metal Nanoparticles in Porous Cellulose Fibers, Chem. Mater. 15 (2003) 4401-4406.

DOI: 10.1021/cm034720r

Google Scholar

[18] Jun Shan, Heikki Tenhu, Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications, Chem. Commun. 28 (2007) 4580-4598.

DOI: 10.1039/b707740h

Google Scholar

[19] Zhiming Liu, Mei Li, Lyudmila Turyanska, Oleg Makarovsky, Amalia Patanè, Wenjian Wu, and Stephen Mann, Self-Assembly of Electrically Conducting Biopolymer Thin Films by Cellulose Regeneration in Gold Nanoparticle Aqueous Dispersions, Chemistry of Materials 22 (2010).

DOI: 10.1021/cm1001863

Google Scholar

[20] G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nature Phy Sci 241 (1973) 20-22.

DOI: 10.1038/physci241020a0

Google Scholar