[1]
M. Kerker, Editor, Surface Chemistry and Colloids, MTP International Review of Science, Butterworths, London, 1972, Series 2, Vol. 7, Chapters 1 and 2.
Google Scholar
[2]
J. D. Robertson, Membrane structure, J. Cell Biol. 91 (1981) 189-204.
Google Scholar
[3]
P. Mueller, D. O. Rudin, H. T. Tien, W. C. Wescott, Reconstitution of cell membrane structure in vitro and its transformation into an excitable system, Nature 194 (1962) 979-980.
DOI: 10.1038/194979a0
Google Scholar
[4]
H. T. Tien, Self-assembled lipid bilayers for biosensors and molecular electronic devices, Adv. Mater. 2 (1990) 316-317.
DOI: 10.1002/adma.19900020611
Google Scholar
[5]
A. L. Ottova, T. Martynski, A. Wardak, H. T. Tien, In Bridge Molecular Electronics and Bioelectronoics, Adv. Chem. Series, 240 (1994) 439.
Google Scholar
[6]
X. D. Lu, A. L. Ottova, H.T. Tien, Biophysical aspects of agar-gel supported bilayer lipid membranes: A new method for forming and studying planar bilayer lipid membranes, Bioelectrochem. Bioenerg. 39 (1996) 285-289.
DOI: 10.1016/0302-4598(95)05039-6
Google Scholar
[7]
M. Uto, M. Araki, T. Taniguehi, S. Hoshi, S. Inoue, Stability of an agar-supported bilayer lipid membrane and its application to a chemical sensor, Anal. Sci. 10 (1994) 943-946.
DOI: 10.2116/analsci.10.943
Google Scholar
[8]
A. Wardak, H. T. Tien, Cyclic voltammetry studies of bilayer lipid membranes deposited on platinum by self assembly, Bioelectrochem. Bioenerg. 24 (1990) 1-11.
DOI: 10.1016/0302-4598(80)85001-x
Google Scholar
[9]
H. T. Tien, Z. Salamon, Formation of self-assembled lipid bilayers on solid substrates, Bioelectrochemistry and Bioenergetics 22 (1989) 211-218.
DOI: 10.1016/0302-4598(89)87040-0
Google Scholar
[10]
Z. Sa1mon, G. Tollin, Interfacial electrochemistry of cytochrome c at a lipid bilayer modified electrode: Effect of incorporation of negative charges into the bilayer on cyclic voltammetric parameters, Bioelectrochem. Bioenerg. 26 (1991) 321-334.
DOI: 10.1016/0302-4598(91)80033-y
Google Scholar
[11]
C. G. Siontoroua, A. -M. Oliveira Brettb, D. P. Nikolelis, Evaluation of a glassy carbon electrode modified by a bilayer lipid membrane with incorporated DNA, Talanta 43 (1996) 1137-1144.
DOI: 10.1016/0039-9140(96)01881-4
Google Scholar
[12]
L. A. Dykman, V. A. Bogatyrev, Gold nanoparticles: preparation, functionalisation and applications in biochemistry and immunochemistry, Russian Chemical Reviews 76 (2007) 181-194.
DOI: 10.1070/rc2007v076n02abeh003673
Google Scholar
[13]
Xiuli Zhao, Xiaobin Ding, Zhenghua Deng, Zhaohui Zheng, Yuxing Peng, Xinping Long, Thermoswitchable Electronic Properties of a Gold Nanoparticle/Hydrogel Composite, Macromol. Rapid Commun. 26 (2005) 1784-1787.
DOI: 10.1002/marc.200500534
Google Scholar
[14]
Sung Huh, Seung Bin Kim, Fabrication of Conducting Polymer Films Containing Gold Nanoparticles with Photo-Induced Patterning, J. Phys. Chem. C 114 (2010) 2880-2885.
DOI: 10.1021/jp908743y
Google Scholar
[15]
A. Z. Ernst, S. Zoladek, K. Wiaderek, J. A. Cox, A. Kolary-Zurowska, K. Miecznikowski, P. J. Kulesza, Network films of conducting polymer-linked polyoxometalate-modified gold nanoparticles: Preparation and electrochemical characterization, Electrochimica Acta 53 (2008).
DOI: 10.1016/j.electacta.2007.12.053
Google Scholar
[16]
F. P. Zamborini, M. C. Leopold, J. F. Hicks, P. J. Kulesza, M. A. Malik, R. W. Murray, Electron Hopping Conductivity and Vapor Sensing Properties of Flexible Network Polymer Films of Metal Nanoparticles, J. Am. Chem. Soc. 124 (2002) 8958-8964.
DOI: 10.1021/ja025965s
Google Scholar
[17]
Junhui He, Toyoki Kunitake, Aiko Nakao, Facile In Situ Synthesis of Noble Metal Nanoparticles in Porous Cellulose Fibers, Chem. Mater. 15 (2003) 4401-4406.
DOI: 10.1021/cm034720r
Google Scholar
[18]
Jun Shan, Heikki Tenhu, Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications, Chem. Commun. 28 (2007) 4580-4598.
DOI: 10.1039/b707740h
Google Scholar
[19]
Zhiming Liu, Mei Li, Lyudmila Turyanska, Oleg Makarovsky, Amalia Patanè, Wenjian Wu, and Stephen Mann, Self-Assembly of Electrically Conducting Biopolymer Thin Films by Cellulose Regeneration in Gold Nanoparticle Aqueous Dispersions, Chemistry of Materials 22 (2010).
DOI: 10.1021/cm1001863
Google Scholar
[20]
G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nature Phy Sci 241 (1973) 20-22.
DOI: 10.1038/physci241020a0
Google Scholar