Actuator-Like Hydrogels Based on Conductive Chitosan

Article Preview

Abstract:

Intrinsically conducting polymers are of great interest for a large number of applications. But among major drawbacks are their low solubility in common solvents and their poor mechanical properties. Elaboration of composites associating a matrix, bringing its mechanical properties, and polyaniline, as the conducting polymer is a way of overcoming these disadvantages. Chitosan-graft-polyaniline copolymers were synthesized by simple oxidative method. The grafting reaction was quite total and it was found that the copolymers crosslinked to yield a composite hydrogel in which the polyaniline was homogeneously embedded. The conductivity of precursor (block copolymer) and gels was found to be larger than 10-2 S.cm-1. The composite gels were characterized in terms of swelling and rheological properties. They can be classified as "superabsorbent" hydrogels and the swelling is reversible. The composite gels were then successfully used as actuators.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-38

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Menon, F. Carpi, D. De Rossi, Concept design of novel bio-inspired distributed actuators for space applications, Acta Astronautica 65 (2009) 825-833.

DOI: 10.1016/j.actaastro.2009.01.076

Google Scholar

[2] B. Ando, C. Bonomo, L. Fortuna, P. Giannone, S. Graziani, L. Sparti, S. Strazzeri, A bio-inspired device to detect equilibrium variations using IPMCs and ferrofluids, Sensors and Actuators A 144 (2008) 242-250.

DOI: 10.1016/j.sna.2008.02.005

Google Scholar

[3] B. Guo, A. Finne-Wistrand, A.C. Albertsson, Facile synthesis of degradable and electrically conductive polysaccharide hydrogels, Biomacromolecules 12 (2011) 2601-2609.

DOI: 10.1021/bm200389t

Google Scholar

[4] Y.A. Ismail, J.G. Martinez, A.S. Al Harrasi, S.J. Kim, T.F. Otero, Sensing characteristics of a conducting polymer/hydrogel hybrid microfiber artificial muscle, Sensors and Actuators B 160 (2011) 1180-1190.

DOI: 10.1016/j.snb.2011.09.044

Google Scholar

[5] N.K. Guimard, N. Gomez, C.E. Schmidt, Conducting polymers in biomedical engineering, Prog. Polym. Sci. 32 (2007) 876-921.

Google Scholar

[6] K.C. Gupta, F.H. Jabrail, Glutaraldehyde crosslinked chitosan microspheres for controlled release of centchroman, Carbohydrate Research 342 (2007) 2244-2252.

DOI: 10.1016/j.carres.2007.06.009

Google Scholar

[7] M. Mucha, K. Wankowicz, J. Balcerzak, Analysis of water adsorption on chitosan and its blends with hydroxypropylcellulose, e-Polymers 16 (2007) 1-10.

DOI: 10.1515/epoly.2007.7.1.181

Google Scholar

[8] B. Wang, J. Zhang, G. Cheng, S. Dong, Amperometric enzyme electrode for the determination of hydrogen peroxide based on sol gel/hydrogel composite film, Analytica Chimica Acta 407 (2000) 111-118.

DOI: 10.1016/s0003-2670(99)00778-3

Google Scholar

[9] R. Hejazi, M. Amiji, Stomach –specific anti-H pylori therapy. Part III: Effect of chitosan microspheres crosslinking on the gastric residence and local tetracycline concentrations in fasted gerbils, Int. J. Pharm. 272 (2004) 99-108.

DOI: 10.1081/pdt-120022154

Google Scholar

[10] K.C. Gupta, M.N.V. Ravi Kumar, Drug release behavior of beads and microgranules of chitosan, Biomaterials 21 (2000) 1115-1119.

DOI: 10.1016/s0142-9612(99)00263-x

Google Scholar

[11] G. Crini, Non-conventional low-cost adsorbents for dye removal: A review, Bioresource Technology 9 (2006) 1061-1085.

DOI: 10.1016/j.biortech.2005.05.001

Google Scholar

[12] P. Baroni, R.S. Vieira, E. Meneghetti, M.G.C. da Silva, M.M. Beppu, Evaluation of batch adsorption of chromium ions on natural and crosslinked chitosan membranes, Journal of Hazardous Materials 152 (2008) 1155-1163.

DOI: 10.1016/j.jhazmat.2007.07.099

Google Scholar

[13] I. Arvanitoyannis, Totally and partially biodegradable polymer blends based on natural and synthetic macromolecules: Preparation, physical properties, and potential as food packaging materials, Journal of Macromolecular Science – Reviews in macromolecular chemistry and Physics 39C (1999).

DOI: 10.1081/mc-100101420

Google Scholar

[14] C. Tual, E. Espuche, M. Escoubes, A. Domard, Transport properties of chitosan membranes: Influence of crosslinking, Journal of Polymer Science Part B : Polymer Physics 38 (2000) 1521-1529.

DOI: 10.1002/(sici)1099-0488(20000601)38:11<1521::aid-polb120>3.0.co;2-#

Google Scholar

[15] M.M. Beppu, R.S. Vieira, C.G. Aimoli, C.C. Santana, Crosslinking of chitosan membranes using glutaraldehyde: effect on ion permeability and water adsorption, Journal of Membrane Science 301 (2007) 126-130.

DOI: 10.1016/j.memsci.2007.06.015

Google Scholar

[16] W. Won, X. Feng, D. Lawless, Pervaporation with chitosan membranes: separation of dimethyl carbonate/methanol/water mixtures, Journal of Membrane Science 209 (2002) 493-508.

DOI: 10.1016/s0376-7388(02)00367-8

Google Scholar

[17] Y. Tsai, S. Chen, H.W. Liaw, Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors, Sensors and Actuators B: Chemical 125 (2007) 474-481.

DOI: 10.1016/j.snb.2007.02.052

Google Scholar

[18] Z. Wu, W. Feng, Y. Feng, Q. Liu, X. Xu, T. Sekino, A. Fujii, M. Ozaki, Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties, Carbon 45 (2007) 1212-1218.

DOI: 10.1016/j.carbon.2007.02.013

Google Scholar

[19] L. Coche-Guerente, J. Desbrieres, J. Fatisson, P. Labbe, M.C. Rodriguez, G. Rivas, Physicochemical characterization of the layer-by-layer self-assembly of polyphenoloxydase and chitosan on glassy carbon electrode, Electrochimica Acta 50 (2005).

DOI: 10.1016/j.electacta.2004.11.040

Google Scholar

[20] W. Argüelles-Monal, F.M. Goycoolea, C. Peniche, I. Higuera-Ciapâra, Rheological study of the chitosan/glutaraldehyde chemical gel system, Polymer Gels and Networks 6 (1998) 429-440.

DOI: 10.1016/s0966-7822(98)00032-x

Google Scholar

[21] S.J. Kim, S.R. Shin, G.M. Spinks, I.Y. Kim, S.I. Kim, Synthesis and characteristics of a semi-interpenetrating polymer network based on chitosan/polyaniline under different pH conditions, Journal of Applied Polymer Science 96 (2005) 867-873.

DOI: 10.1002/app.21524

Google Scholar

[22] C.K. Tan, D.J. Blackwood, Interactions between polyaniline and methanol vapour, Sensors and Actuators 71 (2000) 184-191.

DOI: 10.1016/s0925-4005(00)00615-8

Google Scholar

[23] H. Karami, M.F. Mousavi, M. Shamsipur, A new design for dry polyaniline rechargeable batteries, Journal of Power Sources 117 (2003) 255-259.

DOI: 10.1016/s0378-7753(03)00168-x

Google Scholar

[24] P.P.S. Sengupta, S. Barik, B. Adhikari, Polyaniline as a gas-sensor material, Materials and Manufacturing Processes 21 (2006) 263-270.

DOI: 10.1080/10426910500464602

Google Scholar

[25] J. Stejskal, R.G. Gilbert, Polyaniline. Preparation of a conducting polymer, Pure and Applied Chemistry 74 (2002) 857-867.

DOI: 10.1351/pac200274050857

Google Scholar

[26] N. Kohut-Svelko, S. Reynaud, J. François, Synthesis and characterization of polyaniline prepared in the presence of nonionic surfactants in an aqueous dispersion, Synthetic Metals 150 (2005) 107-114.

DOI: 10.1016/j.synthmet.2004.12.022

Google Scholar

[27] A. Tiwari, Gum Arabic-graft-polyaniline: An electrically active redox biomaterial for sensor applications, Journal of Macromolecular Science Part A: Pure and Applied Chemistry 44 (2007) 735-745.

DOI: 10.1080/10601320701353116

Google Scholar

[28] A.G. Yavuz, A. Uygun, V.R. Bhethanabotla, Substituted polyaniline/chitosan composites: Synthesis and characterization, Carbohydrate Polymers 75 (2009) 448-453.

DOI: 10.1016/j.carbpol.2008.08.005

Google Scholar

[29] M. Jayakannan, P. Anilkumar, A. Sanju, Synthesis and characterization of new azobenzenesulfonic acids doped conducting polyaniline, European Polymer Journal 42 (2006) 2623-2631.

DOI: 10.1016/j.eurpolymj.2006.05.022

Google Scholar

[30] J. Laska, Protonation/plasticization competitions in polyaniline doped with bis(2-ethylhexyl) hydrogen phosphate, Synthetic Metals 129 (2002) 229-233.

DOI: 10.1016/s0379-6779(02)00054-1

Google Scholar

[31] X.H. Xu, G.L. Ren, J. Cheng, Q. Liu, D.G. Li, Q. Chen, Self-assembly of polyaniline-grafted chitosan/glucose oxidase nanolayered films for electrochemical biosensor applications, Journal of Materials Science 41 (2006) 4974-4977.

DOI: 10.1007/s10853-006-0118-4

Google Scholar

[32] S.R. Shin, S.J. Park, S.G. Yoon, G.M. Spinks S.I. Kim, S.J. Kim, Synthesis of conducting polyaniline in semi-IPN based on chitosan, Synthetic Metals 154 (2005) 213-216.

DOI: 10.1016/j.synthmet.2005.07.054

Google Scholar

[33] S.J. Kim, M.S. Kim, S.I. Kim, G.M. Spinks, B.C. Kim, G.G. Wallace, Self-oscillatory actuation at constant DC voltage with pH sensitive chitosan/polyaniline hydrogel blend, Chemistry of Materials 18 (2006) 5805-5809.

DOI: 10.1021/cm060988h

Google Scholar

[34] R. Cruz-Silva, A. Escamilla, M.E. Nicho, G. Padron, A. Ledezma-Perez, E. Arias-Marin, I. Moggio, J. Romero-Garcia, Enzymatic syntheiss of pH-responsive polyaniline colloids by using chitosan as steric stabilizer, European Polymer Journal 43 (2007).

DOI: 10.1016/j.eurpolymj.2007.05.027

Google Scholar

[35] L.M. Lira, S.I. Cordoba de Torresi, Conducting polymer-hydrogel composites for electrochemical release devices: Synthesis and characterization of semi-interpenetrating polyaniline-polyacrylamide networks, Electrochemistry Communications 7 (2005).

DOI: 10.1016/j.elecom.2005.04.027

Google Scholar

[36] N.V. Blinova, M. Trchovà, J. Stejskal, The polymerization of aniline at a solution-gelatin gel interface, European Polymer Journal 45 (2009) 668-673.

DOI: 10.1016/j.eurpolymj.2008.12.034

Google Scholar

[37] M. Hamcerencu, J. Desbrieres, M. Popa, G. Riess, Stimuli-sensitive xanthan derivatives/N-isopropylacrylamide hydrogels: influence of crosslinking agent on interpenetrating polymer network properties, Biomacromolecules 10 (2009) 1911-(1922).

DOI: 10.1021/bm900318g

Google Scholar

[38] C. Thevenot, A. Khoukh, S. Reynaud, J. Desbrieres, B. Grassl, Kinetic aspects, rheological properties and mechanoelectrical effects of hydrogels composed polyacrylamide and polystyrene nanoparticles, Soft Matter 3 (2007) 437-447.

DOI: 10.1039/b614166h

Google Scholar

[39] S.H. Xu, G.L. Ren, J. Cheng, Q. Liu, D.G. Li, Q.J. Chen, Layer by layer self-assembly immobilization of glucose oxidase onto chitosan-graft-polyaniline polymers, J. Mater. Sci. 41 (2006) 3147-3149.

DOI: 10.1007/s10853-006-6412-3

Google Scholar

[40] A. Sidorenko, T. Krupenkin, A. Taylor, P. Fratzl, J. Aizenberg, Reversible switching of hydrogel-actuated nanostructures into complex micropatterns, Science 3151 (2007) 487-490.

DOI: 10.1126/science.1135516

Google Scholar

[41] S.J. Kim, G.M. Spinks, S. Prosser, P.G. Whitten, G.G. Wallace, S.I. Kim, Surprising shrinkage of expanding gels under an external load, Nature Materials 5 (2006) 48-51.

DOI: 10.1038/nmat1553

Google Scholar

[42] D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.H. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature 404 (2000) 588-590.

DOI: 10.1038/35007047

Google Scholar

[43] Y. Osada, A. Matsuda, Shape memory in hydrogels.

Google Scholar

[2] Nature 376 (1995) 219.

Google Scholar

[44] H.B. Schreyer, N. Gebhart, K.J. Kim, M. Shahinpoor, Electrical activation of artificial muscles containing polyacrylonitrile gel fibers, Biomacromolecules 1 (2000) 642-647.

DOI: 10.1021/bm005557l

Google Scholar

[45] B. Kim, J.P. Gong, Y. Osada, Surfactant binding by polyelectrolyte gels and its application to electro-driven chemomechanics, Polym. Int. 48 (1999) 691-698.

DOI: 10.1002/(sici)1097-0126(199908)48:8<691::aid-pi203>3.0.co;2-9

Google Scholar

[46] Y.A. Ismail, S.R. Shin, K.M. Shin, S.G. Yoon, K. Shon, S.I. Kim, S.J. Kim, Electrochemical actuation in chitosan/polyaniline microfibers for artificial muscles fabricated using an in-situ polymerization, Sensors and Actuators B 129 (2008).

DOI: 10.1016/j.snb.2007.09.083

Google Scholar

[47] K. Sawahata, J.P. Gong, Y. Osada, Soft and wet touch-sensing system made of hydrogel, Macromolecular Rapid Communications 16 (1995) 713-716.

DOI: 10.1002/marc.1995.030161002

Google Scholar