[1]
C. Menon, F. Carpi, D. De Rossi, Concept design of novel bio-inspired distributed actuators for space applications, Acta Astronautica 65 (2009) 825-833.
DOI: 10.1016/j.actaastro.2009.01.076
Google Scholar
[2]
B. Ando, C. Bonomo, L. Fortuna, P. Giannone, S. Graziani, L. Sparti, S. Strazzeri, A bio-inspired device to detect equilibrium variations using IPMCs and ferrofluids, Sensors and Actuators A 144 (2008) 242-250.
DOI: 10.1016/j.sna.2008.02.005
Google Scholar
[3]
B. Guo, A. Finne-Wistrand, A.C. Albertsson, Facile synthesis of degradable and electrically conductive polysaccharide hydrogels, Biomacromolecules 12 (2011) 2601-2609.
DOI: 10.1021/bm200389t
Google Scholar
[4]
Y.A. Ismail, J.G. Martinez, A.S. Al Harrasi, S.J. Kim, T.F. Otero, Sensing characteristics of a conducting polymer/hydrogel hybrid microfiber artificial muscle, Sensors and Actuators B 160 (2011) 1180-1190.
DOI: 10.1016/j.snb.2011.09.044
Google Scholar
[5]
N.K. Guimard, N. Gomez, C.E. Schmidt, Conducting polymers in biomedical engineering, Prog. Polym. Sci. 32 (2007) 876-921.
Google Scholar
[6]
K.C. Gupta, F.H. Jabrail, Glutaraldehyde crosslinked chitosan microspheres for controlled release of centchroman, Carbohydrate Research 342 (2007) 2244-2252.
DOI: 10.1016/j.carres.2007.06.009
Google Scholar
[7]
M. Mucha, K. Wankowicz, J. Balcerzak, Analysis of water adsorption on chitosan and its blends with hydroxypropylcellulose, e-Polymers 16 (2007) 1-10.
DOI: 10.1515/epoly.2007.7.1.181
Google Scholar
[8]
B. Wang, J. Zhang, G. Cheng, S. Dong, Amperometric enzyme electrode for the determination of hydrogen peroxide based on sol gel/hydrogel composite film, Analytica Chimica Acta 407 (2000) 111-118.
DOI: 10.1016/s0003-2670(99)00778-3
Google Scholar
[9]
R. Hejazi, M. Amiji, Stomach –specific anti-H pylori therapy. Part III: Effect of chitosan microspheres crosslinking on the gastric residence and local tetracycline concentrations in fasted gerbils, Int. J. Pharm. 272 (2004) 99-108.
DOI: 10.1081/pdt-120022154
Google Scholar
[10]
K.C. Gupta, M.N.V. Ravi Kumar, Drug release behavior of beads and microgranules of chitosan, Biomaterials 21 (2000) 1115-1119.
DOI: 10.1016/s0142-9612(99)00263-x
Google Scholar
[11]
G. Crini, Non-conventional low-cost adsorbents for dye removal: A review, Bioresource Technology 9 (2006) 1061-1085.
DOI: 10.1016/j.biortech.2005.05.001
Google Scholar
[12]
P. Baroni, R.S. Vieira, E. Meneghetti, M.G.C. da Silva, M.M. Beppu, Evaluation of batch adsorption of chromium ions on natural and crosslinked chitosan membranes, Journal of Hazardous Materials 152 (2008) 1155-1163.
DOI: 10.1016/j.jhazmat.2007.07.099
Google Scholar
[13]
I. Arvanitoyannis, Totally and partially biodegradable polymer blends based on natural and synthetic macromolecules: Preparation, physical properties, and potential as food packaging materials, Journal of Macromolecular Science – Reviews in macromolecular chemistry and Physics 39C (1999).
DOI: 10.1081/mc-100101420
Google Scholar
[14]
C. Tual, E. Espuche, M. Escoubes, A. Domard, Transport properties of chitosan membranes: Influence of crosslinking, Journal of Polymer Science Part B : Polymer Physics 38 (2000) 1521-1529.
DOI: 10.1002/(sici)1099-0488(20000601)38:11<1521::aid-polb120>3.0.co;2-#
Google Scholar
[15]
M.M. Beppu, R.S. Vieira, C.G. Aimoli, C.C. Santana, Crosslinking of chitosan membranes using glutaraldehyde: effect on ion permeability and water adsorption, Journal of Membrane Science 301 (2007) 126-130.
DOI: 10.1016/j.memsci.2007.06.015
Google Scholar
[16]
W. Won, X. Feng, D. Lawless, Pervaporation with chitosan membranes: separation of dimethyl carbonate/methanol/water mixtures, Journal of Membrane Science 209 (2002) 493-508.
DOI: 10.1016/s0376-7388(02)00367-8
Google Scholar
[17]
Y. Tsai, S. Chen, H.W. Liaw, Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors, Sensors and Actuators B: Chemical 125 (2007) 474-481.
DOI: 10.1016/j.snb.2007.02.052
Google Scholar
[18]
Z. Wu, W. Feng, Y. Feng, Q. Liu, X. Xu, T. Sekino, A. Fujii, M. Ozaki, Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties, Carbon 45 (2007) 1212-1218.
DOI: 10.1016/j.carbon.2007.02.013
Google Scholar
[19]
L. Coche-Guerente, J. Desbrieres, J. Fatisson, P. Labbe, M.C. Rodriguez, G. Rivas, Physicochemical characterization of the layer-by-layer self-assembly of polyphenoloxydase and chitosan on glassy carbon electrode, Electrochimica Acta 50 (2005).
DOI: 10.1016/j.electacta.2004.11.040
Google Scholar
[20]
W. Argüelles-Monal, F.M. Goycoolea, C. Peniche, I. Higuera-Ciapâra, Rheological study of the chitosan/glutaraldehyde chemical gel system, Polymer Gels and Networks 6 (1998) 429-440.
DOI: 10.1016/s0966-7822(98)00032-x
Google Scholar
[21]
S.J. Kim, S.R. Shin, G.M. Spinks, I.Y. Kim, S.I. Kim, Synthesis and characteristics of a semi-interpenetrating polymer network based on chitosan/polyaniline under different pH conditions, Journal of Applied Polymer Science 96 (2005) 867-873.
DOI: 10.1002/app.21524
Google Scholar
[22]
C.K. Tan, D.J. Blackwood, Interactions between polyaniline and methanol vapour, Sensors and Actuators 71 (2000) 184-191.
DOI: 10.1016/s0925-4005(00)00615-8
Google Scholar
[23]
H. Karami, M.F. Mousavi, M. Shamsipur, A new design for dry polyaniline rechargeable batteries, Journal of Power Sources 117 (2003) 255-259.
DOI: 10.1016/s0378-7753(03)00168-x
Google Scholar
[24]
P.P.S. Sengupta, S. Barik, B. Adhikari, Polyaniline as a gas-sensor material, Materials and Manufacturing Processes 21 (2006) 263-270.
DOI: 10.1080/10426910500464602
Google Scholar
[25]
J. Stejskal, R.G. Gilbert, Polyaniline. Preparation of a conducting polymer, Pure and Applied Chemistry 74 (2002) 857-867.
DOI: 10.1351/pac200274050857
Google Scholar
[26]
N. Kohut-Svelko, S. Reynaud, J. François, Synthesis and characterization of polyaniline prepared in the presence of nonionic surfactants in an aqueous dispersion, Synthetic Metals 150 (2005) 107-114.
DOI: 10.1016/j.synthmet.2004.12.022
Google Scholar
[27]
A. Tiwari, Gum Arabic-graft-polyaniline: An electrically active redox biomaterial for sensor applications, Journal of Macromolecular Science Part A: Pure and Applied Chemistry 44 (2007) 735-745.
DOI: 10.1080/10601320701353116
Google Scholar
[28]
A.G. Yavuz, A. Uygun, V.R. Bhethanabotla, Substituted polyaniline/chitosan composites: Synthesis and characterization, Carbohydrate Polymers 75 (2009) 448-453.
DOI: 10.1016/j.carbpol.2008.08.005
Google Scholar
[29]
M. Jayakannan, P. Anilkumar, A. Sanju, Synthesis and characterization of new azobenzenesulfonic acids doped conducting polyaniline, European Polymer Journal 42 (2006) 2623-2631.
DOI: 10.1016/j.eurpolymj.2006.05.022
Google Scholar
[30]
J. Laska, Protonation/plasticization competitions in polyaniline doped with bis(2-ethylhexyl) hydrogen phosphate, Synthetic Metals 129 (2002) 229-233.
DOI: 10.1016/s0379-6779(02)00054-1
Google Scholar
[31]
X.H. Xu, G.L. Ren, J. Cheng, Q. Liu, D.G. Li, Q. Chen, Self-assembly of polyaniline-grafted chitosan/glucose oxidase nanolayered films for electrochemical biosensor applications, Journal of Materials Science 41 (2006) 4974-4977.
DOI: 10.1007/s10853-006-0118-4
Google Scholar
[32]
S.R. Shin, S.J. Park, S.G. Yoon, G.M. Spinks S.I. Kim, S.J. Kim, Synthesis of conducting polyaniline in semi-IPN based on chitosan, Synthetic Metals 154 (2005) 213-216.
DOI: 10.1016/j.synthmet.2005.07.054
Google Scholar
[33]
S.J. Kim, M.S. Kim, S.I. Kim, G.M. Spinks, B.C. Kim, G.G. Wallace, Self-oscillatory actuation at constant DC voltage with pH sensitive chitosan/polyaniline hydrogel blend, Chemistry of Materials 18 (2006) 5805-5809.
DOI: 10.1021/cm060988h
Google Scholar
[34]
R. Cruz-Silva, A. Escamilla, M.E. Nicho, G. Padron, A. Ledezma-Perez, E. Arias-Marin, I. Moggio, J. Romero-Garcia, Enzymatic syntheiss of pH-responsive polyaniline colloids by using chitosan as steric stabilizer, European Polymer Journal 43 (2007).
DOI: 10.1016/j.eurpolymj.2007.05.027
Google Scholar
[35]
L.M. Lira, S.I. Cordoba de Torresi, Conducting polymer-hydrogel composites for electrochemical release devices: Synthesis and characterization of semi-interpenetrating polyaniline-polyacrylamide networks, Electrochemistry Communications 7 (2005).
DOI: 10.1016/j.elecom.2005.04.027
Google Scholar
[36]
N.V. Blinova, M. Trchovà, J. Stejskal, The polymerization of aniline at a solution-gelatin gel interface, European Polymer Journal 45 (2009) 668-673.
DOI: 10.1016/j.eurpolymj.2008.12.034
Google Scholar
[37]
M. Hamcerencu, J. Desbrieres, M. Popa, G. Riess, Stimuli-sensitive xanthan derivatives/N-isopropylacrylamide hydrogels: influence of crosslinking agent on interpenetrating polymer network properties, Biomacromolecules 10 (2009) 1911-(1922).
DOI: 10.1021/bm900318g
Google Scholar
[38]
C. Thevenot, A. Khoukh, S. Reynaud, J. Desbrieres, B. Grassl, Kinetic aspects, rheological properties and mechanoelectrical effects of hydrogels composed polyacrylamide and polystyrene nanoparticles, Soft Matter 3 (2007) 437-447.
DOI: 10.1039/b614166h
Google Scholar
[39]
S.H. Xu, G.L. Ren, J. Cheng, Q. Liu, D.G. Li, Q.J. Chen, Layer by layer self-assembly immobilization of glucose oxidase onto chitosan-graft-polyaniline polymers, J. Mater. Sci. 41 (2006) 3147-3149.
DOI: 10.1007/s10853-006-6412-3
Google Scholar
[40]
A. Sidorenko, T. Krupenkin, A. Taylor, P. Fratzl, J. Aizenberg, Reversible switching of hydrogel-actuated nanostructures into complex micropatterns, Science 3151 (2007) 487-490.
DOI: 10.1126/science.1135516
Google Scholar
[41]
S.J. Kim, G.M. Spinks, S. Prosser, P.G. Whitten, G.G. Wallace, S.I. Kim, Surprising shrinkage of expanding gels under an external load, Nature Materials 5 (2006) 48-51.
DOI: 10.1038/nmat1553
Google Scholar
[42]
D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.H. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature 404 (2000) 588-590.
DOI: 10.1038/35007047
Google Scholar
[43]
Y. Osada, A. Matsuda, Shape memory in hydrogels.
Google Scholar
[2]
Nature 376 (1995) 219.
Google Scholar
[44]
H.B. Schreyer, N. Gebhart, K.J. Kim, M. Shahinpoor, Electrical activation of artificial muscles containing polyacrylonitrile gel fibers, Biomacromolecules 1 (2000) 642-647.
DOI: 10.1021/bm005557l
Google Scholar
[45]
B. Kim, J.P. Gong, Y. Osada, Surfactant binding by polyelectrolyte gels and its application to electro-driven chemomechanics, Polym. Int. 48 (1999) 691-698.
DOI: 10.1002/(sici)1097-0126(199908)48:8<691::aid-pi203>3.0.co;2-9
Google Scholar
[46]
Y.A. Ismail, S.R. Shin, K.M. Shin, S.G. Yoon, K. Shon, S.I. Kim, S.J. Kim, Electrochemical actuation in chitosan/polyaniline microfibers for artificial muscles fabricated using an in-situ polymerization, Sensors and Actuators B 129 (2008).
DOI: 10.1016/j.snb.2007.09.083
Google Scholar
[47]
K. Sawahata, J.P. Gong, Y. Osada, Soft and wet touch-sensing system made of hydrogel, Macromolecular Rapid Communications 16 (1995) 713-716.
DOI: 10.1002/marc.1995.030161002
Google Scholar