[1]
S. Nakamura, Candela-Class High-Brightness InGaN/AlGaN Double Heterostructure Blue-Light-Emitting Diodes, App. Phys. Lett. 64 (1994)1687–1689.
DOI: 10.1063/1.111832
Google Scholar
[2]
Y. Nakamura, White-Light LEDs, Opt. Photonics News. 4 (2004)25–29.
Google Scholar
[3]
L. S. Rohwer and A. M. Srivastava, Development of Phosphors for LEDS, Electrochem. Soc. Interface. (2003) 36–39.
DOI: 10.1149/2.f09032if
Google Scholar
[4]
J. Y. Taso (Ed. ), Light Emitting Diodes (LEDs) for General Illumination Update 2002, Optoelectronics Industry Development Association, Washington, DC, (2002).
Google Scholar
[5]
P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, Fabrication and Characterization of GaN/InGaN/AlGaN Double Heterostructure LEDs and Their Application in Luminescence Conversion LEDs, Mater. Sci. Eng. 59 (1990).
DOI: 10.1016/s0921-5107(98)00352-3
Google Scholar
[6]
R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, High-Power Phosphor-Converted Light-Emitting Diodes Based on III-Nitrides, J. IEEE. 8 (2002)339–345.
DOI: 10.1109/2944.999189
Google Scholar
[7]
W.C. Lee, C.L. Tu, C.Y. Weng and S.L. Chung, A novel process for combustion synthesis of AlN powder, J. Mater. Res. 10 (1995) 774-778.
DOI: 10.1557/jmr.1995.0774
Google Scholar
[8]
C.C. Hwang and S.L. Chung, Combustion synthesis of boron nitride powder, J. Mater. Res. 13 (1998) 680-686.
DOI: 10.1557/jmr.1998.0085
Google Scholar
[9]
J. Yang, T. Wang, D.C. Chen, G .D. Chen, Q.L. Liu, An investigation of Eu2+-doped CaAlSiN3 fabricated by an alloy-nitridation method, , Mater Sci and Eng B. 177 ( 2012) 1596-1604.
DOI: 10.1016/j.mseb.2012.08.005
Google Scholar
[10]
X. Piao, K.I. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, Preparation of CaSiAlN3: Eu2+ Phosphors by the Self-Propagating High Temperature Synthesis and Their Luminescent Properties, Chem. Mater. 19 (2007) 4592–4599.
DOI: 10.1021/cm070623c
Google Scholar
[11]
Y.S. Kim, S.W. Choi, J.H. Park, B.K. Kim S.H. Hong, Red-Emitting (Sr, Ca)AlSiN3: Eu2+ Phosphors Synthesized by Spark Plasma Sintering, ECS Journal of Solid State Science and Technology. 2 (2) (2013) R3021-R3025.
DOI: 10.1149/2.008302jss
Google Scholar
[12]
Y. Shen , W. Zhuang , Y. Liu , H. He , H. Tao, Preparation and luminescence properties of Eu2+ -doped CASN-sinoite multiphase system for LED, J. Rare Earths. 28 (2010) 289-291.
DOI: 10.1016/s1002-0721(10)60376-6
Google Scholar
[13]
S.L. Chung and C.W. Chang, Reaction Mechanism in Combustion Synthesis of α-Si3N4 Powder Using NaN3, J. Mater. Res. 23 (2008) 2720–2726.
Google Scholar
[14]
X.H. He, N. Lian , J.H. Sun ,M.Y. Guan, Dependence of luminescence properties on composition of rare-earth activated (oxy)nitrides phosphors for white-LEDs applications, J Mater Sci. 44 (2009) 4763–4775.
DOI: 10.1007/s10853-009-3668-4
Google Scholar
[15]
Z. Zhang, C. A. Anneke Del, H. L. Peter, Notten, J. Zhao, D. Pieter, and Hubertus T. Hintzena, Photoluminescence Properties of Red-Emitting Mn2+-Activated CaAlSiN3 Phosphor for White-LEDs, ECS Journal of Solid State Science and Technology. 2 (4) (2013).
DOI: 10.1149/2.017304jss
Google Scholar
[16]
W. Hiromu , Y. Hisanori , K. Naoto , Crystal structure and luminescence of Sr0. 99Eu0. 01AlSiN3, Journal of Solid State Chemistry. 181 (2008) 1848–1852.
Google Scholar
[17]
B. Y. Han, S. P. Singh, and K.S. Sohnz, Photoluminescent and Structural Properties of MgAlSiN3: Eu2+ Phosphors, J. Elec. chem. Soc. 158 (2) (2011) J32-J35.
Google Scholar
[18]
M. Masayoshi, Computational Chemistry Approach for White LED (Oxy)Nitride Phosphors, J. Solid State Sci Tech. 2 (2) (2013) R3048-R3058.
DOI: 10.1149/2.006302jss
Google Scholar
[19]
G. Blasse, Energy Transfer Between Inequivalent Eu2+ Ions, J. Solid State Chem. 62 (1986) 207–211.
DOI: 10.1016/0022-4596(86)90233-1
Google Scholar
[20]
S.L. Chung and W.C. Chou, Combustion Synthesis of Ca2Si5N8: Eu2+ Phosphors and their Luminescent properties, J. Am. Ceram. Soc. 96 (2013) 2086–(2092).
Google Scholar