Coupling SHS and SPS Processes

Article Preview

Abstract:

The consolidation of refractory ceramic powders at relatively milder conditions with respect to conventional methods represents an important target to achieve. Based on results recently reported in the literature, it is possible to state that the combination of the Self-propagating High-temperature Synthesis (SHS) with the Spark Plasma Sintering (SPS) technologies provides a useful contribution in this direction. Specifically, the two-steps processing route consisting in the synthesis of the ceramic powders by SHS and their subsequent densification by SPS is successfully utilized to obtain various dense MB2-based materials (M= Zr, Hf, Ta). In this regard, an important role is played by the SHS process, particularly for the synthesis of composite powders. Indeed, stronger interfaces are established among the different phases formed in-situ, so that diffusion phenomena are promoted during SPS. Additional benefits are produced by the use of the latter technology, due to the direct passage of the electric current through the powders undergoing sintering and the die containing them.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-120

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, J.A. Zaykoski, Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc. 90 (2007) 1347–1364.

DOI: 10.1111/j.1551-2916.2007.01583.x

Google Scholar

[2] Z.A. Munir, U. Anselmi-Tamburini, Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion. Mater. Sci. Rep. 3 (1989) 277-365.

DOI: 10.1016/0920-2307(89)90001-7

Google Scholar

[3] A. Cincotti, R. Licheri, A.M. Locci, R. Orrù, G. Cao, G. A review on combustion synthesis of novel materials: Recent experimental and modeling results. J. Chem. Technol. Biot. 78 (2003) 122-127.

DOI: 10.1002/jctb.757

Google Scholar

[4] S.K. Mishra, S. Das, L.C. Pathak, Defect structures in zirconium diboride powder prepared by self-propagating high-temperature synthesis. Mater. Sci. Eng. A 364 (2004) 249–255.

DOI: 10.1016/j.msea.2003.08.021

Google Scholar

[5] C.Y. Hsieh, C.N. Lin, S.L. Chung, J. Cheng, D.K. Agrawal, Microwave sintering of AlN powder synthesized by a SHS method. J. Eur. Ceram. Soc. 27 (2007) 343-350.

DOI: 10.1016/j.jeurceramsoc.2006.03.003

Google Scholar

[6] J.H. Lee, S.K. Ko, C.W. Won Sintering behavior of Al2O3-TiC composite powder prepared by SHS process. Mater. Res. Bull. 36 (2001) 989–996.

DOI: 10.1016/s0025-5408(01)00579-7

Google Scholar

[7] D. Zientara, M.M. Bućko, J. Lis, Investigation of γ-alon structural evolution during sintering and hot-pressing. Key Eng. Mater. 409 (2009) 313-316.

DOI: 10.4028/www.scientific.net/kem.409.313

Google Scholar

[8] Y. Takano, M. Y., K. Hirota, O. Yamaguchi, Mechanical Properties of CoAl Materials with the Combined Additions of ZrO2(3Y) and Al2O3. J. Am. Ceram. Soc. 84 (2001) 2445–2447.

DOI: 10.1111/j.1151-2916.2001.tb01032.x

Google Scholar

[9] L. Jaworska, M. Bucko, L. Stobierski, B. Krolicka, A. Kalinka, SPS and HP-HT sintering and characterization of Cr2AlC matrix composites. J. Aust. Ceram. Soc. 49 (2013) 7–8.

Google Scholar

[10] C. Musa, R. Orrù, D. Sciti, L. Silvestroni, G. Cao, Synthesis, consolidation and characterization of monolithic and SiC whiskers reinforced HfB2 ceramics. J. Eur. Ceram. Soc. 33 (2013) 603-614.

DOI: 10.1016/j.jeurceramsoc.2012.10.004

Google Scholar

[11] C. Musa, R. Licheri, R. Orrù, G. Cao, Synthesis, Sintering, and Oxidative Behavior of HfB2-HfSi2 Ceramics. Ind. Eng. Chem. Res. (2014) Article ASAP DOI: 10. 1021/ie4032692.

DOI: 10.1021/ie4032692

Google Scholar

[12] R. Licheri, R. Orrù, C. Musa, A.M. Locci, G. Cao, Consolidation via Spark Plasma Sintering of HfB2/SiC and HfB2/HfC/SiC Composite Powders obtained by Self-propagating High-temperature Synthesis. J. Alloys Compd. 478 (2009) 572–578.

DOI: 10.1016/j.jallcom.2008.11.092

Google Scholar

[13] A. Kikuchi, N. Okinakab, T. Akiyamab, A large thermoelectric figure of merit of La-doped SrTiO3 prepared by combustion synthesis with post-spark plasma sintering. Scripta Mater. 63 (2010) 407–410.

DOI: 10.1016/j.scriptamat.2010.04.041

Google Scholar

[14] X. Yan, Y. Mi, L. Xiong, SHS and properties of perovskite La0. 7Sr0. 3MnO3 powders by using dual oxidants. Adv. Mater. Res. 287-290 (2011) 671-674.

DOI: 10.4028/www.scientific.net/amr.287-290.671

Google Scholar

[15] H. Shimizu, M. Yoshinaka, K. Hirota, O. Yamaguchi, Fabrication and mechanical properties of MoSi2 by Spark Plasma Sintering. Mater. Res. Bull. 37 (2002) 1557-1563.

DOI: 10.1016/s0025-5408(02)00852-8

Google Scholar

[16] T. Tsuchida, T. Kakuta, Fabrication of SPS compacts from NbC–NbB2 powder mixtures synthesized by the MA–SHS in air process. J. Alloys Compd. 415 (2006) 156–161.

DOI: 10.1016/j.jallcom.2005.08.012

Google Scholar

[17] A. Kitaoka, K. Hirota, M. Yoshinaka, Y. Miyamoto, O. Yamaguchi, Toughening and Strengthening of NiAl with Al2O3 by the Addition of ZrO2(3Y). J. Am. Ceram. Soc. 83 (2000) 1311–1313.

DOI: 10.1111/j.1151-2916.2000.tb01379.x

Google Scholar

[18] L. Bai, X. Mao, W. Shen, C.C. Ge, Comparative study of β-Si3N4 powders prepared by SHS sintered by spark plasma sintering and hot pressing. J Univ Sci Technol B 14 (2007) 271–275.

DOI: 10.1016/s1005-8850(07)60052-8

Google Scholar

[19] W. Chen, P. Wang, D. Chen, B. Zhang, J. Jiang, Y. Cheng, D. Yan, Synthesis of (Ca, Mg)- α-Sialon from slag by self-propagating high-temperature synthesis. J. Mater. Chem. 12 (2002) 1199-1202.

DOI: 10.1039/b200540a

Google Scholar

[20] K. L. Smirnov, Spark Plasma Sintering of SiAlON Ceramics. Int. J. Self-Propag. High-Temp Synth. 18 (2009) 92–96.

DOI: 10.3103/s1061386209020046

Google Scholar

[21] L. Zhang, T. Tosho, N. Okinaka, T. Akiyama, Thermoelectric Properties of Combustion Synthesized and Spark Plasma Sintered Sr1-xRxTiO3 (R = Y, La, Sm, Gd, Dy, 0 < x < 0. 1). Mater. Trans. 48 (2007) 2088-(2093).

DOI: 10.2320/matertrans.e-mra2007836

Google Scholar

[22] R. Licheri, R. Orrù, C. Musa, G. Cao, Synthesis, densification and characterization of TaB2-SiC composites. Ceram. Int. 36 (2010) 937-941.

DOI: 10.1016/j.ceramint.2009.10.028

Google Scholar

[23] R. Licheri, R. Orrù, C. Musa, G. Cao, Efficient technologies for the Fabrication of dense TaB2-based Ultra High Temperature Ceramics. ACS Appl. Mater. Interfaces 2 (2010) 2206-2212.

DOI: 10.1021/am100211h

Google Scholar

[24] C. Musa, R. Licheri, A.M. Locci, R. Orrù, G. Cao, M.A. Rodriguez, L. Jaworska, Energy efficiency during conventional and novel sintering processes: the case of Ti-Al2O3-TiC composites. J. Clean. Prod. 17 (2009) 877-882.

DOI: 10.1016/j.jclepro.2009.01.012

Google Scholar

[25] L. Chlubny, J. Lis, M.M. Bućko, Sintering and Hot-Pressing of Ti2AlC obtained by SHS Process. Adv. Sci. Tech. 63 (2010) 282-286.

DOI: 10.4028/www.scientific.net/ast.63.282

Google Scholar

[26] L. Chlubny, J. Lis, M.M. Bućko, D. Kata, Properties of hot-pressed Ti2AlN obtained by SHS process, in Advanced Ceramic Coatings and Materials for Extreme Environments II (eds D. Zhu, H. -T. Lin, Y. Zhou, T. Hwang, M. Halbig and S. Mathur), John Wiley & Sons, Inc., Hoboken, NJ, USA, (2012).

DOI: 10.1002/9781118217474.ch14

Google Scholar

[27] A.K. Khanra, M.M. Godkhindi, L.C. Pathak, Sintering behaviour of ultra-fine titanium diboride powder prepared by self-propagating high-temperature synthesis (SHS) technique. Mater. Sci. Eng. A 454–455 (2007) 281–287.

DOI: 10.1016/j.msea.2006.11.083

Google Scholar

[28] C. Musa, A.M. Locci, R. Licheri, G. Cao, D. Vallauri, F.A. Deorsola, E. Tresso, J. Suffner, H. Hahn, P. Klimczyk, L. Jaworska, Spark plasma sintering of self-propagating high-temperature synthesized TiC0. 7/TiB2 powders and detailed characterization of dense product. Ceram. Int. 35 (2009).

DOI: 10.1016/j.ceramint.2009.02.018

Google Scholar

[29] L. Bai, C.C. Ge, W. Shen, X. Mao, K. Zhang, Densification, microstructure, and fracture behavior of TiC/Si3N4 composites by spark plasma sintering, Rare Metals 27 (2008) 315-319.

DOI: 10.1016/s1001-0521(08)60136-9

Google Scholar

[30] J. Russias, S. Cardinal, C. Esnouf, G. Fantozzi, K. Bienvenu, Hot pressed titanium nitride obtained from SHS starting powders: Influence of a pre-sintering heat-treatment of the starting powders on the densification process. J. Eur. Ceram. Soc. 27 (2007).

DOI: 10.1016/j.jeurceramsoc.2006.02.032

Google Scholar

[31] J. Xu, B. Zhang, W. Li, H. Zhuang, G. Jiang Pressureless sintering of TiN/Y-(α/β)-sialon ceramics from SHS powder. Ceram. Int. 32 (2006) 599–602.

DOI: 10.1016/j.ceramint.2005.04.018

Google Scholar

[32] L. Jaworska , L. Stobierski , A. Twardowska , D. Królicka, Preparation of materials based on Ti-Si-C system using high temperature – high pressure method. J. Mater. Process. Tech. 1 (2005) 162-163.

DOI: 10.1016/j.jmatprotec.2005.02.172

Google Scholar

[33] R. Licheri, R. Orrù, A. M. Locci, G. Cao, Efficient Synthesis/Sintering Routes to obtain Fully Dense ZrB2-SiC Ultra-High-Temperature Ceramics (UHTCs). Ind. Eng. Chem. Res. 46 (2007) 9087-9096.

DOI: 10.1021/ie0701423

Google Scholar

[34] R. Licheri, R. Orrù, C. Musa, G. Cao, Combination of SHS and SPS Techniques for Fabrication of Fully Dense ZrB2-ZrC-SiC Composites. Mater. Letters 62 (2008) 432–435.

DOI: 10.1016/j.matlet.2007.05.066

Google Scholar

[35] T. Tsuchida, S. Yamamoto Spark plasma sintering of ZrB2–ZrC powder mixtures synthesized by MA-SHS in air. J Mater Sci 42 (2007) 772–778.

DOI: 10.1007/s10853-006-0719-y

Google Scholar

[36] R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, G. Cao, Consolidation/Synthesis of Materials by Electric Current Activated/Assisted Sintering. Mater. Sci. Eng. R 63 (2009) 127-287.

DOI: 10.1016/j.mser.2008.09.003

Google Scholar

[37] P. Angerer, E. Neubauer, L.G. Yu, K.A. Khor, Texture and structure evolution of tantalum powder samples during spark-plasma-sintering (SPS) and conventional hot-pressing. Int. J. Refract. Met. Hard Mater. 25.

DOI: 10.1016/j.ijrmhm.2006.10.001

Google Scholar

[4] (2007) 280-285.

Google Scholar

[38] P. Dahl, I. Kaus, Z. Zhao, M. Johnsson, M. Nygren, K. Wiik, T. Grande, M.A. Einarsrud, Densification and properties of zirconia prepared by three different sintering techniques. Ceram. Int. 33 (2007) 1603-1610.

DOI: 10.1016/j.ceramint.2006.07.005

Google Scholar

[39] Q. Huang, H. Zhang, Y. Huang, H. Li, Z. Wan, Comparison of Spark Plasma Sintering and Hot Pressing of MgAlON. Key Eng. Mat. 336-338 (2007) 1060-1061.

DOI: 10.4028/www.scientific.net/kem.336-338.1060

Google Scholar

[40] F. Monteverde, Ultra-high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering. J. Alloys Compd. 428 (2007) 197-205.

DOI: 10.1016/j.jallcom.2006.01.107

Google Scholar

[41] W.W. Wu, G.J. Zhang, Y.M. Kan, P.L. Wang, K. Vanmeensel, J. Vleugels, O. Van der Biest, Synthesis and microstructural features of ZrB2–SiC-based composites by reactive spark plasma sintering and reactive hot pressing. Scripta Mater. 57 (2007).

DOI: 10.1016/j.scriptamat.2007.04.025

Google Scholar

[42] L. Nikzad, R. Orrù, R. Licheri, G. Cao, Fabrication and Formation Mechanism of B4C-TiB2 Composite by Reactive Spark Plasma Sintering using Unmilled and Mechanically Activated Reactants. J. Am. Ceram. Soc. 95 (2012) 3463–3471.

DOI: 10.1111/j.1551-2916.2012.05416.x

Google Scholar

[43] C. Musa, R. Orrù, R. Licheri, G. Cao Spark plasma synthesis and densification of TaB2 by pulsed electric current sintering. Mater. Lett. 65 (2011) 3080-3082.

DOI: 10.1016/j.matlet.2011.06.094

Google Scholar