[1]
W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, J.A. Zaykoski, Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc. 90 (2007) 1347–1364.
DOI: 10.1111/j.1551-2916.2007.01583.x
Google Scholar
[2]
Z.A. Munir, U. Anselmi-Tamburini, Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion. Mater. Sci. Rep. 3 (1989) 277-365.
DOI: 10.1016/0920-2307(89)90001-7
Google Scholar
[3]
A. Cincotti, R. Licheri, A.M. Locci, R. Orrù, G. Cao, G. A review on combustion synthesis of novel materials: Recent experimental and modeling results. J. Chem. Technol. Biot. 78 (2003) 122-127.
DOI: 10.1002/jctb.757
Google Scholar
[4]
S.K. Mishra, S. Das, L.C. Pathak, Defect structures in zirconium diboride powder prepared by self-propagating high-temperature synthesis. Mater. Sci. Eng. A 364 (2004) 249–255.
DOI: 10.1016/j.msea.2003.08.021
Google Scholar
[5]
C.Y. Hsieh, C.N. Lin, S.L. Chung, J. Cheng, D.K. Agrawal, Microwave sintering of AlN powder synthesized by a SHS method. J. Eur. Ceram. Soc. 27 (2007) 343-350.
DOI: 10.1016/j.jeurceramsoc.2006.03.003
Google Scholar
[6]
J.H. Lee, S.K. Ko, C.W. Won Sintering behavior of Al2O3-TiC composite powder prepared by SHS process. Mater. Res. Bull. 36 (2001) 989–996.
DOI: 10.1016/s0025-5408(01)00579-7
Google Scholar
[7]
D. Zientara, M.M. Bućko, J. Lis, Investigation of γ-alon structural evolution during sintering and hot-pressing. Key Eng. Mater. 409 (2009) 313-316.
DOI: 10.4028/www.scientific.net/kem.409.313
Google Scholar
[8]
Y. Takano, M. Y., K. Hirota, O. Yamaguchi, Mechanical Properties of CoAl Materials with the Combined Additions of ZrO2(3Y) and Al2O3. J. Am. Ceram. Soc. 84 (2001) 2445–2447.
DOI: 10.1111/j.1151-2916.2001.tb01032.x
Google Scholar
[9]
L. Jaworska, M. Bucko, L. Stobierski, B. Krolicka, A. Kalinka, SPS and HP-HT sintering and characterization of Cr2AlC matrix composites. J. Aust. Ceram. Soc. 49 (2013) 7–8.
Google Scholar
[10]
C. Musa, R. Orrù, D. Sciti, L. Silvestroni, G. Cao, Synthesis, consolidation and characterization of monolithic and SiC whiskers reinforced HfB2 ceramics. J. Eur. Ceram. Soc. 33 (2013) 603-614.
DOI: 10.1016/j.jeurceramsoc.2012.10.004
Google Scholar
[11]
C. Musa, R. Licheri, R. Orrù, G. Cao, Synthesis, Sintering, and Oxidative Behavior of HfB2-HfSi2 Ceramics. Ind. Eng. Chem. Res. (2014) Article ASAP DOI: 10. 1021/ie4032692.
DOI: 10.1021/ie4032692
Google Scholar
[12]
R. Licheri, R. Orrù, C. Musa, A.M. Locci, G. Cao, Consolidation via Spark Plasma Sintering of HfB2/SiC and HfB2/HfC/SiC Composite Powders obtained by Self-propagating High-temperature Synthesis. J. Alloys Compd. 478 (2009) 572–578.
DOI: 10.1016/j.jallcom.2008.11.092
Google Scholar
[13]
A. Kikuchi, N. Okinakab, T. Akiyamab, A large thermoelectric figure of merit of La-doped SrTiO3 prepared by combustion synthesis with post-spark plasma sintering. Scripta Mater. 63 (2010) 407–410.
DOI: 10.1016/j.scriptamat.2010.04.041
Google Scholar
[14]
X. Yan, Y. Mi, L. Xiong, SHS and properties of perovskite La0. 7Sr0. 3MnO3 powders by using dual oxidants. Adv. Mater. Res. 287-290 (2011) 671-674.
DOI: 10.4028/www.scientific.net/amr.287-290.671
Google Scholar
[15]
H. Shimizu, M. Yoshinaka, K. Hirota, O. Yamaguchi, Fabrication and mechanical properties of MoSi2 by Spark Plasma Sintering. Mater. Res. Bull. 37 (2002) 1557-1563.
DOI: 10.1016/s0025-5408(02)00852-8
Google Scholar
[16]
T. Tsuchida, T. Kakuta, Fabrication of SPS compacts from NbC–NbB2 powder mixtures synthesized by the MA–SHS in air process. J. Alloys Compd. 415 (2006) 156–161.
DOI: 10.1016/j.jallcom.2005.08.012
Google Scholar
[17]
A. Kitaoka, K. Hirota, M. Yoshinaka, Y. Miyamoto, O. Yamaguchi, Toughening and Strengthening of NiAl with Al2O3 by the Addition of ZrO2(3Y). J. Am. Ceram. Soc. 83 (2000) 1311–1313.
DOI: 10.1111/j.1151-2916.2000.tb01379.x
Google Scholar
[18]
L. Bai, X. Mao, W. Shen, C.C. Ge, Comparative study of β-Si3N4 powders prepared by SHS sintered by spark plasma sintering and hot pressing. J Univ Sci Technol B 14 (2007) 271–275.
DOI: 10.1016/s1005-8850(07)60052-8
Google Scholar
[19]
W. Chen, P. Wang, D. Chen, B. Zhang, J. Jiang, Y. Cheng, D. Yan, Synthesis of (Ca, Mg)- α-Sialon from slag by self-propagating high-temperature synthesis. J. Mater. Chem. 12 (2002) 1199-1202.
DOI: 10.1039/b200540a
Google Scholar
[20]
K. L. Smirnov, Spark Plasma Sintering of SiAlON Ceramics. Int. J. Self-Propag. High-Temp Synth. 18 (2009) 92–96.
DOI: 10.3103/s1061386209020046
Google Scholar
[21]
L. Zhang, T. Tosho, N. Okinaka, T. Akiyama, Thermoelectric Properties of Combustion Synthesized and Spark Plasma Sintered Sr1-xRxTiO3 (R = Y, La, Sm, Gd, Dy, 0 < x < 0. 1). Mater. Trans. 48 (2007) 2088-(2093).
DOI: 10.2320/matertrans.e-mra2007836
Google Scholar
[22]
R. Licheri, R. Orrù, C. Musa, G. Cao, Synthesis, densification and characterization of TaB2-SiC composites. Ceram. Int. 36 (2010) 937-941.
DOI: 10.1016/j.ceramint.2009.10.028
Google Scholar
[23]
R. Licheri, R. Orrù, C. Musa, G. Cao, Efficient technologies for the Fabrication of dense TaB2-based Ultra High Temperature Ceramics. ACS Appl. Mater. Interfaces 2 (2010) 2206-2212.
DOI: 10.1021/am100211h
Google Scholar
[24]
C. Musa, R. Licheri, A.M. Locci, R. Orrù, G. Cao, M.A. Rodriguez, L. Jaworska, Energy efficiency during conventional and novel sintering processes: the case of Ti-Al2O3-TiC composites. J. Clean. Prod. 17 (2009) 877-882.
DOI: 10.1016/j.jclepro.2009.01.012
Google Scholar
[25]
L. Chlubny, J. Lis, M.M. Bućko, Sintering and Hot-Pressing of Ti2AlC obtained by SHS Process. Adv. Sci. Tech. 63 (2010) 282-286.
DOI: 10.4028/www.scientific.net/ast.63.282
Google Scholar
[26]
L. Chlubny, J. Lis, M.M. Bućko, D. Kata, Properties of hot-pressed Ti2AlN obtained by SHS process, in Advanced Ceramic Coatings and Materials for Extreme Environments II (eds D. Zhu, H. -T. Lin, Y. Zhou, T. Hwang, M. Halbig and S. Mathur), John Wiley & Sons, Inc., Hoboken, NJ, USA, (2012).
DOI: 10.1002/9781118217474.ch14
Google Scholar
[27]
A.K. Khanra, M.M. Godkhindi, L.C. Pathak, Sintering behaviour of ultra-fine titanium diboride powder prepared by self-propagating high-temperature synthesis (SHS) technique. Mater. Sci. Eng. A 454–455 (2007) 281–287.
DOI: 10.1016/j.msea.2006.11.083
Google Scholar
[28]
C. Musa, A.M. Locci, R. Licheri, G. Cao, D. Vallauri, F.A. Deorsola, E. Tresso, J. Suffner, H. Hahn, P. Klimczyk, L. Jaworska, Spark plasma sintering of self-propagating high-temperature synthesized TiC0. 7/TiB2 powders and detailed characterization of dense product. Ceram. Int. 35 (2009).
DOI: 10.1016/j.ceramint.2009.02.018
Google Scholar
[29]
L. Bai, C.C. Ge, W. Shen, X. Mao, K. Zhang, Densification, microstructure, and fracture behavior of TiC/Si3N4 composites by spark plasma sintering, Rare Metals 27 (2008) 315-319.
DOI: 10.1016/s1001-0521(08)60136-9
Google Scholar
[30]
J. Russias, S. Cardinal, C. Esnouf, G. Fantozzi, K. Bienvenu, Hot pressed titanium nitride obtained from SHS starting powders: Influence of a pre-sintering heat-treatment of the starting powders on the densification process. J. Eur. Ceram. Soc. 27 (2007).
DOI: 10.1016/j.jeurceramsoc.2006.02.032
Google Scholar
[31]
J. Xu, B. Zhang, W. Li, H. Zhuang, G. Jiang Pressureless sintering of TiN/Y-(α/β)-sialon ceramics from SHS powder. Ceram. Int. 32 (2006) 599–602.
DOI: 10.1016/j.ceramint.2005.04.018
Google Scholar
[32]
L. Jaworska , L. Stobierski , A. Twardowska , D. Królicka, Preparation of materials based on Ti-Si-C system using high temperature – high pressure method. J. Mater. Process. Tech. 1 (2005) 162-163.
DOI: 10.1016/j.jmatprotec.2005.02.172
Google Scholar
[33]
R. Licheri, R. Orrù, A. M. Locci, G. Cao, Efficient Synthesis/Sintering Routes to obtain Fully Dense ZrB2-SiC Ultra-High-Temperature Ceramics (UHTCs). Ind. Eng. Chem. Res. 46 (2007) 9087-9096.
DOI: 10.1021/ie0701423
Google Scholar
[34]
R. Licheri, R. Orrù, C. Musa, G. Cao, Combination of SHS and SPS Techniques for Fabrication of Fully Dense ZrB2-ZrC-SiC Composites. Mater. Letters 62 (2008) 432–435.
DOI: 10.1016/j.matlet.2007.05.066
Google Scholar
[35]
T. Tsuchida, S. Yamamoto Spark plasma sintering of ZrB2–ZrC powder mixtures synthesized by MA-SHS in air. J Mater Sci 42 (2007) 772–778.
DOI: 10.1007/s10853-006-0719-y
Google Scholar
[36]
R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, G. Cao, Consolidation/Synthesis of Materials by Electric Current Activated/Assisted Sintering. Mater. Sci. Eng. R 63 (2009) 127-287.
DOI: 10.1016/j.mser.2008.09.003
Google Scholar
[37]
P. Angerer, E. Neubauer, L.G. Yu, K.A. Khor, Texture and structure evolution of tantalum powder samples during spark-plasma-sintering (SPS) and conventional hot-pressing. Int. J. Refract. Met. Hard Mater. 25.
DOI: 10.1016/j.ijrmhm.2006.10.001
Google Scholar
[4]
(2007) 280-285.
Google Scholar
[38]
P. Dahl, I. Kaus, Z. Zhao, M. Johnsson, M. Nygren, K. Wiik, T. Grande, M.A. Einarsrud, Densification and properties of zirconia prepared by three different sintering techniques. Ceram. Int. 33 (2007) 1603-1610.
DOI: 10.1016/j.ceramint.2006.07.005
Google Scholar
[39]
Q. Huang, H. Zhang, Y. Huang, H. Li, Z. Wan, Comparison of Spark Plasma Sintering and Hot Pressing of MgAlON. Key Eng. Mat. 336-338 (2007) 1060-1061.
DOI: 10.4028/www.scientific.net/kem.336-338.1060
Google Scholar
[40]
F. Monteverde, Ultra-high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering. J. Alloys Compd. 428 (2007) 197-205.
DOI: 10.1016/j.jallcom.2006.01.107
Google Scholar
[41]
W.W. Wu, G.J. Zhang, Y.M. Kan, P.L. Wang, K. Vanmeensel, J. Vleugels, O. Van der Biest, Synthesis and microstructural features of ZrB2–SiC-based composites by reactive spark plasma sintering and reactive hot pressing. Scripta Mater. 57 (2007).
DOI: 10.1016/j.scriptamat.2007.04.025
Google Scholar
[42]
L. Nikzad, R. Orrù, R. Licheri, G. Cao, Fabrication and Formation Mechanism of B4C-TiB2 Composite by Reactive Spark Plasma Sintering using Unmilled and Mechanically Activated Reactants. J. Am. Ceram. Soc. 95 (2012) 3463–3471.
DOI: 10.1111/j.1551-2916.2012.05416.x
Google Scholar
[43]
C. Musa, R. Orrù, R. Licheri, G. Cao Spark plasma synthesis and densification of TaB2 by pulsed electric current sintering. Mater. Lett. 65 (2011) 3080-3082.
DOI: 10.1016/j.matlet.2011.06.094
Google Scholar