New Results on Structural Macrokinetics Obtained on Multilayer Nanofoils

Article Preview

Abstract:

SHS process in the multilayer nanofoils possesses many unique properties, such as unexpectedly high propagating rate (up to 102 m/s) and extremely short time of reaction and product phase formation (10-7 – 10-6 s). Understanding of the mechanism of this process has critical significance not only for the theory of SHS, but also for various applications of the reactive nanofilms, e.g., joining of dissimilar materials and items. An overview of new experimental results shows existence of complex structure of the reaction waves in the multilayer foils and reveals some new “solid-flame” combustion phenomena at macroscopic level. Comparison of these data with the study of the micro- and nano-scale processes by different experimental methods sheds new light on the intrinsic mechanism of the process. The roles of the melts, reactive exothermic dissolution and methastable phases are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-93

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Weihs T.P. Self-propagating reactions in multilayer materials. In: Glocker D.A., Shah S.I., eds. Handbook of thin films process technology. Bristol: Institute of Physics Publishing; 1998 Part F.

Google Scholar

[2] Rogachev A.S. Exothermic reaction waves in multilayer nanofilms. Russ. Chem. Rev. 2008; 77(1): 21-37.

DOI: 10.1070/rc2008v077n01abeh003748

Google Scholar

[3] Reiss M.E., Esber C.M., Van Heerden D., Gavens A.J., Williams M.E., Weihs T.P. Self-propagating formation reactions in Nb/Si multilayers. Materials Science and Engineering 1999; A261: 217-222.

DOI: 10.1016/s0921-5093(98)01069-7

Google Scholar

[4] Reeves R.V., Rodrigues M.A., Jones E.D., Adams D.P. Condenced –phase and oxidation reaction behavior of Ti/2B foils in various gaseous environments. The Journal of Physical Chemistry C, 2012, 116, 17904-17912.

DOI: 10.1021/jp303785r

Google Scholar

[5] Stover A.K., Walker N.K., Knepper R., Fritz G.M., Hufnagel T.C., Weihs T.P. Correlating mechanical properties to microstructure in rolled nickel aluminum reactive laminates. Boston: JANAF Conference, (2008).

Google Scholar

[6] Wei C.T., Maddox B.R., Stover A.K., Weihs T.P., Nesterenko V.F., Meyers M.A. Reaction in Ni-Al laminates by laser-shock compression and spalling. ActaMaterialia, 2011, 59, 5276-5287.

DOI: 10.1016/j.actamat.2011.05.004

Google Scholar

[7] Specht P.E., Thadhani N.N., Weihs T.P. Configuration effects on shock wave propagation in Ni-Al multilayer composites. Journal of Applied Physics, 2012, 111, 073527.

DOI: 10.1063/1.3702867

Google Scholar

[8] Srivastava V.C., Singh T., GhoshGhowdhury, Jindal V. Microstructural characteristics of accumulative roll-bonded Ni-Al – based metal-intermetallic laminate composite. Journal of Materials Engineering and Performance, 2012, 21(9), 1912-(1918).

DOI: 10.1007/s11665-011-0114-y

Google Scholar

[9] Wei C.T., Nesterenko V.F., Weihs T.P., Remington B.A., Park H. -S., Meyers M.A. Response of Ni/Al laminates to laser-driven compression. ActaMaterialia, 2012, 60, 3929-3942.

DOI: 10.1016/j.actamat.2012.03.028

Google Scholar

[10] Mozaffari A., DaneshManesh H., Janghorban K. Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process. Journal of Alloys and Compounds, 2010, 489, 103–109.

DOI: 10.1016/j.jallcom.2009.09.022

Google Scholar

[11] Mozaffari A., Hosseini M., DaneshManesh H. Al/Ni metal intermetallic composite produced by accumulative roll bondingand reaction annealing. Journal of Alloys and Compounds, 2011, 509, 9938 –9945.

DOI: 10.1016/j.jallcom.2011.07.103

Google Scholar

[12] Karpov M.I., Vnukov V.I., Volkov K.G., Medved N.V., Khodos I.I., Abrosimova G.E. Vacuum rolling as a method for obtaining of multilayer composites with nanometer-scale thickness of the layers, Materialovedenie, 2004, #1, pp.48-53 (in Russian).

Google Scholar

[13] BoksteinB.S., VnukovV.I., GolosovE.V., KarpovM.I., KolobovYu.R., Kolesnikov D.A., Korzhov V.P., Rodin A.O. Structure and diffusion properties in laminated composites of a Cu-Ti system. Russian Physics Journal, 2009; 52(8): 811-815.

DOI: 10.1007/s11182-010-9313-5

Google Scholar

[14] BetekhinV.I., KolobovYu.R., KardashevB.K., GolosovE.V., NarykovaM.V., KadomtsevA.G., KlimenkoD.N., KarpovM.I. Elasto-plasticpropertiesofCu-NbNanolaminate. Technical Physics Letters, 2012; 18(2): 144-146.

Google Scholar

[15] KarpovM.I., KorzhovV.P., VnukovV.I., KolobovYu.R., GolosovE.V. Structure and hardness of multilayer nanostructural Cu/Ag-composite. Tambov University Reports (Vestnik TGU), 2010; 15(3): 941-942 (in Russian).

Google Scholar

[16] KorzhovV.P., KarpovM.I., Nekrasov A.N. Structure and hardness of multilayer Ti/Ni-microcomposite produced by rolling. Tambov University Reports (Vestnik TGU), 2010; 15(3): 945-946 (in Russian).

Google Scholar

[17] Karpov M.I., Korzhov V.P., Kiiko V.M., Nekrasov A.N. Structure of plane composites on nickel base reinforced by intermetallic layers. Tambov University Reports (Vestnik TGU). 2010: 15(3): 947-948 (in Russian).

Google Scholar

[18] VadchenkoS.G., RogachevA.S., Method for production of multilayer energetic nanostructured films for the permanent connection of metals. Russian Patent Application 2012107273/02(011058), 29. 02. 2012; Positive Decision 28. 11. 2012 (in Russian).

Google Scholar

[19] Ma E, Thompson C.V., Clevenger L.A. Nucleation and growth during reactions in multilayer AI/Ni films: The early stage of Al, Ni formation. J. Appl. Phys. 1991: 69(4): 2211-2218.

DOI: 10.1063/1.348722

Google Scholar

[20] Michaelsen C., Barmak K. Calorimetric determination of NiAl3-growth kinetics in sputter-deposited Ni/Al diffusion couples. Journal of Alloys and Compounds 1997; 257: 211-214.

DOI: 10.1016/s0925-8388(97)00014-5

Google Scholar

[21] Trenkle J.C., Koerner L.J., Tate M.W., Walker Noel, Gruner S.M., Wihs T.P., Hufnagel T.C. Time-resolved x-ray microdiffraction studies of phase transformations during rapidly propagating reactions in Al/Ni and Zr/Ni multilayer foils. J. Appl. Phys. 2010; 107: 113511.

DOI: 10.1063/1.3428471

Google Scholar

[22] Vohra M., Grapes M., Swaminathan P., Weihs T.P., Knio O.M. Modeling and quantitative nanocalorimetric analysis to assess interdiffusion in a Ni/Al bilayer. J. Appl. Phys. 2011; 110: 123521.

DOI: 10.1063/1.3671639

Google Scholar

[23] Crone J.C., Knap J., Chung P.W., Rice B.M. Role of microstructure in initiation of Ni-Al reactive multilayers. Appl. Phys. Lett. 2011; 98: 141910.

DOI: 10.1063/1.3575576

Google Scholar

[24] Mann A.B., Gavens A.J., Reiss M.E., Van Heerden D., Bao G., Weihs T.P. Modeling and characterizing the propagation velocity of exothermic reactions in multilayer foils.J. Appl. Phys. 1997; 82(3): 1178-1188.

DOI: 10.1063/1.365886

Google Scholar

[25] Frank St., Divinski S.V., Sodervall U., Herzig Chr. Ni tracer diffusion in the B2-compound NiAl: influence of temperature and composition. Acta Mater. 2001; 49: 1399-1411.

DOI: 10.1016/s1359-6454(01)00037-4

Google Scholar

[26] Evteev A.V., Levchenko E.V., Belova I.V., Murch G.E. Molecular dynamics simulation of diffusion in a (110) B2-NiAl film. Intermetallics 2011; 19: 848-854.

DOI: 10.1016/j.intermet.2011.01.010

Google Scholar

[27] Stuber S., Holland-Moritz D., Unruh T, Meyer A. Ni self-diffusion in refractory Al-Ni melts. Physical Review B 2010; 81: 024204.

DOI: 10.1103/physrevb.81.024204

Google Scholar

[28] Rogachev A.S., Vadchenko S.G., Mukasyan A.S. Self-sustained waves of exothermic dissolution in reactive multilayer nano-foils. Applied physics letters. 2012; 101: 063119.

DOI: 10.1063/1.4745201

Google Scholar

[29] Politano O., Baras F., Mukasyan A., Vadchenko S.G., Rogachev A.S. Microstructure development during NiAl intermetallic synthesis in reactive Ni–Al nanolayers: Numerical investigations vs. TEM observations Surface and Coatings Technology, 2013; 215: 485–492.

DOI: 10.1016/j.surfcoat.2012.09.065

Google Scholar

[30] Qiu X., Liu R., Guo S., Graeter J.H., Kecskes L., Wang J. Combustion synthesis reactions in cold-rolled Ni/Al and Ti/Al multilayers. Metallurgical and Materials Transactions A 2009; 40: 1541-1546.

DOI: 10.1007/s11661-009-9840-2

Google Scholar

[31] Boettge B., Braeuer J., Wiemer M., Petzold M., Bagdahn J., GessnerT. Fabrication and characterization of reactive nanoscale multilayer systems for low-temperature bonding in microsystem technology. J. Micromech. Microeng. 2010; 20: 064018.

DOI: 10.1088/0960-1317/20/6/064018

Google Scholar

[32] Wiemer M.D., Braeuer J., Wünsch D., Gessner T. Reactive bonding and low temperature bonding of heterogeneous materials. ESC Transactions 2010; 33(4): 307-318.

DOI: 10.1149/1.3483520

Google Scholar

[33] Ramos A.S., Vieira M.T. Intermetallic compound formation in Pd/Al multilayer thin films. Intermetallics 2012; 25: 70-74.

DOI: 10.1016/j.intermet.2012.02.014

Google Scholar

[34] Braeuer J., Besser J., Wiemer M., Gessner T. A novel technique for MEMS packaging: Reactive bonding with integrated material systems. Sensors and Actuators A 2012; 188: 212-219.

DOI: 10.1016/j.sna.2012.01.015

Google Scholar

[35] Zhou X., Shen R., Ye Y., Zhu P., Hu Y., Wu L. Influence of Al/Cu reactive multilayer films additives on exploding foil initiator. J. Appl. Phys. 2011; 110: 094505.

DOI: 10.1063/1.3658617

Google Scholar

[36] Qiu X., Tang R., Liu R., Huang H., Guo S., Yu H. A micro initiator realized by reactive Ni/Al nanolaminates. J. Mater. Sci: Mater. Electron. 2012; 23: 2140-2144.

DOI: 10.1007/s10854-012-0726-5

Google Scholar

[37] Kelly S.C., Barron S., Thadhani N., Weihs T.P. Laser-accelerated flyer system for investigating reactions in Ni-Al mixtures. AIP Conf. Proc. 2012; 1426: 599-602.

DOI: 10.1063/1.3686350

Google Scholar

[38] Joress H., Barron S.C., Livi K.J.T., Aronhime N., Weihs T.P. Appl. Phys. Lett. 2012; 101: 111908.

DOI: 10.1063/1.4752133

Google Scholar