[1]
Weihs T.P. Self-propagating reactions in multilayer materials. In: Glocker D.A., Shah S.I., eds. Handbook of thin films process technology. Bristol: Institute of Physics Publishing; 1998 Part F.
Google Scholar
[2]
Rogachev A.S. Exothermic reaction waves in multilayer nanofilms. Russ. Chem. Rev. 2008; 77(1): 21-37.
DOI: 10.1070/rc2008v077n01abeh003748
Google Scholar
[3]
Reiss M.E., Esber C.M., Van Heerden D., Gavens A.J., Williams M.E., Weihs T.P. Self-propagating formation reactions in Nb/Si multilayers. Materials Science and Engineering 1999; A261: 217-222.
DOI: 10.1016/s0921-5093(98)01069-7
Google Scholar
[4]
Reeves R.V., Rodrigues M.A., Jones E.D., Adams D.P. Condenced –phase and oxidation reaction behavior of Ti/2B foils in various gaseous environments. The Journal of Physical Chemistry C, 2012, 116, 17904-17912.
DOI: 10.1021/jp303785r
Google Scholar
[5]
Stover A.K., Walker N.K., Knepper R., Fritz G.M., Hufnagel T.C., Weihs T.P. Correlating mechanical properties to microstructure in rolled nickel aluminum reactive laminates. Boston: JANAF Conference, (2008).
Google Scholar
[6]
Wei C.T., Maddox B.R., Stover A.K., Weihs T.P., Nesterenko V.F., Meyers M.A. Reaction in Ni-Al laminates by laser-shock compression and spalling. ActaMaterialia, 2011, 59, 5276-5287.
DOI: 10.1016/j.actamat.2011.05.004
Google Scholar
[7]
Specht P.E., Thadhani N.N., Weihs T.P. Configuration effects on shock wave propagation in Ni-Al multilayer composites. Journal of Applied Physics, 2012, 111, 073527.
DOI: 10.1063/1.3702867
Google Scholar
[8]
Srivastava V.C., Singh T., GhoshGhowdhury, Jindal V. Microstructural characteristics of accumulative roll-bonded Ni-Al – based metal-intermetallic laminate composite. Journal of Materials Engineering and Performance, 2012, 21(9), 1912-(1918).
DOI: 10.1007/s11665-011-0114-y
Google Scholar
[9]
Wei C.T., Nesterenko V.F., Weihs T.P., Remington B.A., Park H. -S., Meyers M.A. Response of Ni/Al laminates to laser-driven compression. ActaMaterialia, 2012, 60, 3929-3942.
DOI: 10.1016/j.actamat.2012.03.028
Google Scholar
[10]
Mozaffari A., DaneshManesh H., Janghorban K. Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process. Journal of Alloys and Compounds, 2010, 489, 103–109.
DOI: 10.1016/j.jallcom.2009.09.022
Google Scholar
[11]
Mozaffari A., Hosseini M., DaneshManesh H. Al/Ni metal intermetallic composite produced by accumulative roll bondingand reaction annealing. Journal of Alloys and Compounds, 2011, 509, 9938 –9945.
DOI: 10.1016/j.jallcom.2011.07.103
Google Scholar
[12]
Karpov M.I., Vnukov V.I., Volkov K.G., Medved N.V., Khodos I.I., Abrosimova G.E. Vacuum rolling as a method for obtaining of multilayer composites with nanometer-scale thickness of the layers, Materialovedenie, 2004, #1, pp.48-53 (in Russian).
Google Scholar
[13]
BoksteinB.S., VnukovV.I., GolosovE.V., KarpovM.I., KolobovYu.R., Kolesnikov D.A., Korzhov V.P., Rodin A.O. Structure and diffusion properties in laminated composites of a Cu-Ti system. Russian Physics Journal, 2009; 52(8): 811-815.
DOI: 10.1007/s11182-010-9313-5
Google Scholar
[14]
BetekhinV.I., KolobovYu.R., KardashevB.K., GolosovE.V., NarykovaM.V., KadomtsevA.G., KlimenkoD.N., KarpovM.I. Elasto-plasticpropertiesofCu-NbNanolaminate. Technical Physics Letters, 2012; 18(2): 144-146.
Google Scholar
[15]
KarpovM.I., KorzhovV.P., VnukovV.I., KolobovYu.R., GolosovE.V. Structure and hardness of multilayer nanostructural Cu/Ag-composite. Tambov University Reports (Vestnik TGU), 2010; 15(3): 941-942 (in Russian).
Google Scholar
[16]
KorzhovV.P., KarpovM.I., Nekrasov A.N. Structure and hardness of multilayer Ti/Ni-microcomposite produced by rolling. Tambov University Reports (Vestnik TGU), 2010; 15(3): 945-946 (in Russian).
Google Scholar
[17]
Karpov M.I., Korzhov V.P., Kiiko V.M., Nekrasov A.N. Structure of plane composites on nickel base reinforced by intermetallic layers. Tambov University Reports (Vestnik TGU). 2010: 15(3): 947-948 (in Russian).
Google Scholar
[18]
VadchenkoS.G., RogachevA.S., Method for production of multilayer energetic nanostructured films for the permanent connection of metals. Russian Patent Application 2012107273/02(011058), 29. 02. 2012; Positive Decision 28. 11. 2012 (in Russian).
Google Scholar
[19]
Ma E, Thompson C.V., Clevenger L.A. Nucleation and growth during reactions in multilayer AI/Ni films: The early stage of Al, Ni formation. J. Appl. Phys. 1991: 69(4): 2211-2218.
DOI: 10.1063/1.348722
Google Scholar
[20]
Michaelsen C., Barmak K. Calorimetric determination of NiAl3-growth kinetics in sputter-deposited Ni/Al diffusion couples. Journal of Alloys and Compounds 1997; 257: 211-214.
DOI: 10.1016/s0925-8388(97)00014-5
Google Scholar
[21]
Trenkle J.C., Koerner L.J., Tate M.W., Walker Noel, Gruner S.M., Wihs T.P., Hufnagel T.C. Time-resolved x-ray microdiffraction studies of phase transformations during rapidly propagating reactions in Al/Ni and Zr/Ni multilayer foils. J. Appl. Phys. 2010; 107: 113511.
DOI: 10.1063/1.3428471
Google Scholar
[22]
Vohra M., Grapes M., Swaminathan P., Weihs T.P., Knio O.M. Modeling and quantitative nanocalorimetric analysis to assess interdiffusion in a Ni/Al bilayer. J. Appl. Phys. 2011; 110: 123521.
DOI: 10.1063/1.3671639
Google Scholar
[23]
Crone J.C., Knap J., Chung P.W., Rice B.M. Role of microstructure in initiation of Ni-Al reactive multilayers. Appl. Phys. Lett. 2011; 98: 141910.
DOI: 10.1063/1.3575576
Google Scholar
[24]
Mann A.B., Gavens A.J., Reiss M.E., Van Heerden D., Bao G., Weihs T.P. Modeling and characterizing the propagation velocity of exothermic reactions in multilayer foils.J. Appl. Phys. 1997; 82(3): 1178-1188.
DOI: 10.1063/1.365886
Google Scholar
[25]
Frank St., Divinski S.V., Sodervall U., Herzig Chr. Ni tracer diffusion in the B2-compound NiAl: influence of temperature and composition. Acta Mater. 2001; 49: 1399-1411.
DOI: 10.1016/s1359-6454(01)00037-4
Google Scholar
[26]
Evteev A.V., Levchenko E.V., Belova I.V., Murch G.E. Molecular dynamics simulation of diffusion in a (110) B2-NiAl film. Intermetallics 2011; 19: 848-854.
DOI: 10.1016/j.intermet.2011.01.010
Google Scholar
[27]
Stuber S., Holland-Moritz D., Unruh T, Meyer A. Ni self-diffusion in refractory Al-Ni melts. Physical Review B 2010; 81: 024204.
DOI: 10.1103/physrevb.81.024204
Google Scholar
[28]
Rogachev A.S., Vadchenko S.G., Mukasyan A.S. Self-sustained waves of exothermic dissolution in reactive multilayer nano-foils. Applied physics letters. 2012; 101: 063119.
DOI: 10.1063/1.4745201
Google Scholar
[29]
Politano O., Baras F., Mukasyan A., Vadchenko S.G., Rogachev A.S. Microstructure development during NiAl intermetallic synthesis in reactive Ni–Al nanolayers: Numerical investigations vs. TEM observations Surface and Coatings Technology, 2013; 215: 485–492.
DOI: 10.1016/j.surfcoat.2012.09.065
Google Scholar
[30]
Qiu X., Liu R., Guo S., Graeter J.H., Kecskes L., Wang J. Combustion synthesis reactions in cold-rolled Ni/Al and Ti/Al multilayers. Metallurgical and Materials Transactions A 2009; 40: 1541-1546.
DOI: 10.1007/s11661-009-9840-2
Google Scholar
[31]
Boettge B., Braeuer J., Wiemer M., Petzold M., Bagdahn J., GessnerT. Fabrication and characterization of reactive nanoscale multilayer systems for low-temperature bonding in microsystem technology. J. Micromech. Microeng. 2010; 20: 064018.
DOI: 10.1088/0960-1317/20/6/064018
Google Scholar
[32]
Wiemer M.D., Braeuer J., Wünsch D., Gessner T. Reactive bonding and low temperature bonding of heterogeneous materials. ESC Transactions 2010; 33(4): 307-318.
DOI: 10.1149/1.3483520
Google Scholar
[33]
Ramos A.S., Vieira M.T. Intermetallic compound formation in Pd/Al multilayer thin films. Intermetallics 2012; 25: 70-74.
DOI: 10.1016/j.intermet.2012.02.014
Google Scholar
[34]
Braeuer J., Besser J., Wiemer M., Gessner T. A novel technique for MEMS packaging: Reactive bonding with integrated material systems. Sensors and Actuators A 2012; 188: 212-219.
DOI: 10.1016/j.sna.2012.01.015
Google Scholar
[35]
Zhou X., Shen R., Ye Y., Zhu P., Hu Y., Wu L. Influence of Al/Cu reactive multilayer films additives on exploding foil initiator. J. Appl. Phys. 2011; 110: 094505.
DOI: 10.1063/1.3658617
Google Scholar
[36]
Qiu X., Tang R., Liu R., Huang H., Guo S., Yu H. A micro initiator realized by reactive Ni/Al nanolaminates. J. Mater. Sci: Mater. Electron. 2012; 23: 2140-2144.
DOI: 10.1007/s10854-012-0726-5
Google Scholar
[37]
Kelly S.C., Barron S., Thadhani N., Weihs T.P. Laser-accelerated flyer system for investigating reactions in Ni-Al mixtures. AIP Conf. Proc. 2012; 1426: 599-602.
DOI: 10.1063/1.3686350
Google Scholar
[38]
Joress H., Barron S.C., Livi K.J.T., Aronhime N., Weihs T.P. Appl. Phys. Lett. 2012; 101: 111908.
DOI: 10.1063/1.4752133
Google Scholar