First Principles Calculations of Interfaces in Ultra High Temperature Ceramics

Article Preview

Abstract:

This work focuses on understanding the influence of temperature on correlations between thermal conduction and mechanical strength in material interfaces including a high temperature material interface. Analyses examine single crystal ZrB2, single crystal SiC, and a <0001>-<111> ZrB2-SiC interface using a framework based on Car Parrinello molecular dynamics (CPMD) ab-initio simulation method from 500 K to 2500 K. Analyses indicate that the strength reduction with increase in temperature is strongly correlated to phonon and electron thermal diffusivity change. With increase in temperature, phonon thermal diffusivity increases in the case of ZrB2 and reduces in the cases of SiC as well as the interface. Electron contribution to thermal diffusivity increases with temperature increase in the case of interface. Examination of change in thermal properties at different mechanical strain levels reveals that the mechanisms of strength and thermal property change with increase in temperature may be similar to the mechanisms responsible for property change with change in applied strain.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

100-108

Citation:

Online since:

October 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Westbrook, J.H., Temperature dependence of strength and brittleness of some quartz structures. J. Amer. Ceram. Soc., 1958. 41(11): pp.433-440.

DOI: 10.1111/j.1151-2916.1958.tb12891.x

Google Scholar

[2] May, J.E. and Kronberg, M.L., Temperature dependence of plastic yield stress of single crystals of magnesium oxide. J. Amer. Ceram. Soc., 1960. 43(10): pp.525-530.

DOI: 10.1111/j.1151-2916.1960.tb13608.x

Google Scholar

[3] Spriggs, R.M., Mitchell, J.B., and Vasilos, T., Mechanical properties of pure, dense aluminum oxide as a function of temperature and grain size. J. Am. Ceram. Soc., 1964. 47(7): pp.323-327.

DOI: 10.1111/j.1151-2916.1964.tb12994.x

Google Scholar

[4] Schnitzel, R.H., Deformation of tungsten single crystals from-77 C to 800 C. J. of the Less-Common Metals, 1980. 8: pp.81-89.

DOI: 10.1016/0022-5088(65)90099-8

Google Scholar

[5] Ingel, R.P., Lewis, D., Bender, B.A., and Rice, R.W., Temperature dependence of strength and fracture toughness of ZrO2 single crystals. Communications of the American Ceramic Society, 1982: p. C150-C152.

DOI: 10.1111/j.1151-2916.1982.tb10523.x

Google Scholar

[6] Kim, M.S., Hanada, S., Watanabe, S., and Izumi, O., Temperature and orientation dependence of the deformation and fracture in Ni75Al20Ti5 single crystals. Acta Metallurgica, 1989. 37(5): pp.1465-1474.

DOI: 10.1016/0001-6160(89)90178-8

Google Scholar

[7] Hu, P. and Wang, Z., Flexural strength and fracture behavior of ZrB2-SiC ultra-high temperature ceramic composites at 1800 C J. European Ceram. Soc., 2010. 30: pp.1021-1026.

DOI: 10.1016/j.jeurceramsoc.2009.09.029

Google Scholar

[8] Ramirez-Rico, J., Bautista, M.A., Martinez-Fernandez, J., and Singh, M., Compressive strength degradation in ZrB2-based ultra-high temperature ceramic composites. J. Eur. Ceram. Soc., 2011. 31: pp.1345-1352.

DOI: 10.1016/j.jeurceramsoc.2010.05.020

Google Scholar

[9] Zou, J., Zhang, G. -J., Hu, C. -F., Nishimura, T., Sakka, Y., Vleugels, J., and der Biest, O.V., Strong ZrB2-SiC-WC ceramic at 1600 C. J. Am. Ceram. Soc., 2012. 95(3): pp.874-878.

DOI: 10.1111/j.1551-2916.2011.05062.x

Google Scholar

[10] Fahrenholtz, W.G., Hilmas, G.E., Talmy, I.G., and Zaykoski, J.A., Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc. , 2007. 90(5): pp.1347-1364.

DOI: 10.1111/j.1551-2916.2007.01583.x

Google Scholar

[11] Zhang, L., Pejakovic, D.A., Marschall, J., and Gasch, M., Thermal and electrical transport properties of spark plasma-sintered HfB2 and ZrB2 ceramic. J. Amer. Ceram. Soc., 2011. 94(8): pp.2562-2570.

DOI: 10.1111/j.1551-2916.2011.04411.x

Google Scholar

[12] Majumdar, A. and Reddy, P., Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces. Applied Physics Letters, 2004. 84(3): pp.4768-4770.

DOI: 10.1063/1.1758301

Google Scholar

[13] Phillpot, S.R., Schelling, P.K., and Keblinski, P., Interfacial thermal conductivity: Insights from atomic level simulation. J. Mat. Sci., 2005. 40: p.3143 (5 pp).

DOI: 10.1007/s10853-005-2676-2

Google Scholar

[14] Zhong, H. and Lukes, J.R., Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling. Phys. Rev. B, 2006. 72: p.174302 (10 pp).

DOI: 10.1103/physrevb.74.125403

Google Scholar

[15] Landry, E.S. and McGaughey, A.J.H., Thermal boundary resistance from molecualr dynamics simulations and theoretical calculations. Phys. Rev. B, 2009. 80: p.165304 (11 pp).

DOI: 10.1103/physrevb.80.165304

Google Scholar

[16] Samvedi, V. and Tomar, V., Analyses of interface thermal boundary resistance of Si-Ge superlattice system as a function of film thickness and periodicity. Nanotechnology 20 (2009) 365701 (11pp), (2009).

DOI: 10.1088/0957-4484/20/36/365701

Google Scholar

[17] Samvedi, V. and Tomar, V., Role of heat flow direction, monolayer film thickness, and periodicity in controlling thermal conductivity of a Si-Ge superlattice system. J. Appl. Phys., 2009. 105: p.013541.

DOI: 10.1063/1.3056135

Google Scholar

[18] Samvedi, V. and Tomar, V., Role of straining and morphology in thermal conductivity of a set of Si-Ge superlattices and biomimetic Si-Ge nanocomposites. Journal of Physics-D, Applied Physics, 2010. 43: p.135401 (11pp).

DOI: 10.1088/0022-3727/43/13/135401

Google Scholar

[19] Huang, Z., Fisher, T.S., and Murthy, J., Simulation of thermal conductance across dimensionally mismatched graphene interfaces. J. App. Phys., 2010. 108: p.114310 (7 pp).

DOI: 10.1063/1.3514119

Google Scholar

[20] English, T.S., Duda, J.C., Smoyer, J.L., Jordan, D.A., Norris, P.M., and Zhigilei, L.V., Enhancing and tuning phonon transport at vibrationally mismatched solid-solid interfaces. Phys. Rev. B, 2012. 85: p.035438 (14 pp).

DOI: 10.1103/physrevb.85.035438

Google Scholar

[21] Samvedi, V. and V. Tomar (2012). An ab-initio study of coupling between electronic and phononic contribution to stress dependent thermal conductivity of Au, Si, and SiC., ASCE Journal of Nanomechanics and Micromechanics 2(3): 49-53.

DOI: 10.1061/(asce)nm.2153-5477.0000046

Google Scholar

[22] Samvedi, V. and V. Tomar (2012). Ab-Initio study of softening of ZrB2-SiC material at high temperatures and strains: Correlating phononic and electronic thermal contributions , J. European Ceramic Society 33(3): 615-625.

DOI: 10.1016/j.jeurceramsoc.2012.10.001

Google Scholar

[23] Trivedi, R., Liu, P. -L., Roucka, R., Chizmeshya, A.V.G., Tsong, I., and Kouvetakis, J., Mismatched heteroepitaxy of tetrahedral semiconductors with Si via ZrB2 templates. Chemistry of Materials, 2005. 17(18): pp.4647-4652.

DOI: 10.1021/cm0510918

Google Scholar

[24] Tolle, J., Kouvetakis, J., Kim, D. -., Mahajan, Chizmeshya, Hu, C. -., Bell, Ponce, Tsong, I., and (2005, C.J. o.P., Epitaxial growth of ZrB2(0001) on Si(111) for III-nitride applications: A review. Chinese J Physics, 2005. 43(1-II): pp.233-248.

DOI: 10.1016/j.jcrysgro.2004.04.020

Google Scholar

[25] Liu, P. -L., Chizmeshya, A.V.G., and Kouvetakis, J., Structural, electronic, and energetic properties of SiC.

Google Scholar

[111] ZrB2.

Google Scholar

[1] heterojunctions: A first-principles density functional theory study. Phys. rev B, 2008. 77: p.035326.

Google Scholar

[26] Valiev, M., Bylaska, E.J., Govind, N., Kowalski, K., Straatsma, T.P., van Dam, H.J.J., Wang, D., Nieplocha, J., Apra, E., Windus, T.L., and de Jong, W.A., NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun., 2010. 181: pp.1477-1497.

DOI: 10.1016/j.cpc.2010.04.018

Google Scholar