[1]
Westbrook, J.H., Temperature dependence of strength and brittleness of some quartz structures. J. Amer. Ceram. Soc., 1958. 41(11): pp.433-440.
DOI: 10.1111/j.1151-2916.1958.tb12891.x
Google Scholar
[2]
May, J.E. and Kronberg, M.L., Temperature dependence of plastic yield stress of single crystals of magnesium oxide. J. Amer. Ceram. Soc., 1960. 43(10): pp.525-530.
DOI: 10.1111/j.1151-2916.1960.tb13608.x
Google Scholar
[3]
Spriggs, R.M., Mitchell, J.B., and Vasilos, T., Mechanical properties of pure, dense aluminum oxide as a function of temperature and grain size. J. Am. Ceram. Soc., 1964. 47(7): pp.323-327.
DOI: 10.1111/j.1151-2916.1964.tb12994.x
Google Scholar
[4]
Schnitzel, R.H., Deformation of tungsten single crystals from-77 C to 800 C. J. of the Less-Common Metals, 1980. 8: pp.81-89.
DOI: 10.1016/0022-5088(65)90099-8
Google Scholar
[5]
Ingel, R.P., Lewis, D., Bender, B.A., and Rice, R.W., Temperature dependence of strength and fracture toughness of ZrO2 single crystals. Communications of the American Ceramic Society, 1982: p. C150-C152.
DOI: 10.1111/j.1151-2916.1982.tb10523.x
Google Scholar
[6]
Kim, M.S., Hanada, S., Watanabe, S., and Izumi, O., Temperature and orientation dependence of the deformation and fracture in Ni75Al20Ti5 single crystals. Acta Metallurgica, 1989. 37(5): pp.1465-1474.
DOI: 10.1016/0001-6160(89)90178-8
Google Scholar
[7]
Hu, P. and Wang, Z., Flexural strength and fracture behavior of ZrB2-SiC ultra-high temperature ceramic composites at 1800 C J. European Ceram. Soc., 2010. 30: pp.1021-1026.
DOI: 10.1016/j.jeurceramsoc.2009.09.029
Google Scholar
[8]
Ramirez-Rico, J., Bautista, M.A., Martinez-Fernandez, J., and Singh, M., Compressive strength degradation in ZrB2-based ultra-high temperature ceramic composites. J. Eur. Ceram. Soc., 2011. 31: pp.1345-1352.
DOI: 10.1016/j.jeurceramsoc.2010.05.020
Google Scholar
[9]
Zou, J., Zhang, G. -J., Hu, C. -F., Nishimura, T., Sakka, Y., Vleugels, J., and der Biest, O.V., Strong ZrB2-SiC-WC ceramic at 1600 C. J. Am. Ceram. Soc., 2012. 95(3): pp.874-878.
DOI: 10.1111/j.1551-2916.2011.05062.x
Google Scholar
[10]
Fahrenholtz, W.G., Hilmas, G.E., Talmy, I.G., and Zaykoski, J.A., Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc. , 2007. 90(5): pp.1347-1364.
DOI: 10.1111/j.1551-2916.2007.01583.x
Google Scholar
[11]
Zhang, L., Pejakovic, D.A., Marschall, J., and Gasch, M., Thermal and electrical transport properties of spark plasma-sintered HfB2 and ZrB2 ceramic. J. Amer. Ceram. Soc., 2011. 94(8): pp.2562-2570.
DOI: 10.1111/j.1551-2916.2011.04411.x
Google Scholar
[12]
Majumdar, A. and Reddy, P., Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces. Applied Physics Letters, 2004. 84(3): pp.4768-4770.
DOI: 10.1063/1.1758301
Google Scholar
[13]
Phillpot, S.R., Schelling, P.K., and Keblinski, P., Interfacial thermal conductivity: Insights from atomic level simulation. J. Mat. Sci., 2005. 40: p.3143 (5 pp).
DOI: 10.1007/s10853-005-2676-2
Google Scholar
[14]
Zhong, H. and Lukes, J.R., Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling. Phys. Rev. B, 2006. 72: p.174302 (10 pp).
DOI: 10.1103/physrevb.74.125403
Google Scholar
[15]
Landry, E.S. and McGaughey, A.J.H., Thermal boundary resistance from molecualr dynamics simulations and theoretical calculations. Phys. Rev. B, 2009. 80: p.165304 (11 pp).
DOI: 10.1103/physrevb.80.165304
Google Scholar
[16]
Samvedi, V. and Tomar, V., Analyses of interface thermal boundary resistance of Si-Ge superlattice system as a function of film thickness and periodicity. Nanotechnology 20 (2009) 365701 (11pp), (2009).
DOI: 10.1088/0957-4484/20/36/365701
Google Scholar
[17]
Samvedi, V. and Tomar, V., Role of heat flow direction, monolayer film thickness, and periodicity in controlling thermal conductivity of a Si-Ge superlattice system. J. Appl. Phys., 2009. 105: p.013541.
DOI: 10.1063/1.3056135
Google Scholar
[18]
Samvedi, V. and Tomar, V., Role of straining and morphology in thermal conductivity of a set of Si-Ge superlattices and biomimetic Si-Ge nanocomposites. Journal of Physics-D, Applied Physics, 2010. 43: p.135401 (11pp).
DOI: 10.1088/0022-3727/43/13/135401
Google Scholar
[19]
Huang, Z., Fisher, T.S., and Murthy, J., Simulation of thermal conductance across dimensionally mismatched graphene interfaces. J. App. Phys., 2010. 108: p.114310 (7 pp).
DOI: 10.1063/1.3514119
Google Scholar
[20]
English, T.S., Duda, J.C., Smoyer, J.L., Jordan, D.A., Norris, P.M., and Zhigilei, L.V., Enhancing and tuning phonon transport at vibrationally mismatched solid-solid interfaces. Phys. Rev. B, 2012. 85: p.035438 (14 pp).
DOI: 10.1103/physrevb.85.035438
Google Scholar
[21]
Samvedi, V. and V. Tomar (2012). An ab-initio study of coupling between electronic and phononic contribution to stress dependent thermal conductivity of Au, Si, and SiC., ASCE Journal of Nanomechanics and Micromechanics 2(3): 49-53.
DOI: 10.1061/(asce)nm.2153-5477.0000046
Google Scholar
[22]
Samvedi, V. and V. Tomar (2012). Ab-Initio study of softening of ZrB2-SiC material at high temperatures and strains: Correlating phononic and electronic thermal contributions , J. European Ceramic Society 33(3): 615-625.
DOI: 10.1016/j.jeurceramsoc.2012.10.001
Google Scholar
[23]
Trivedi, R., Liu, P. -L., Roucka, R., Chizmeshya, A.V.G., Tsong, I., and Kouvetakis, J., Mismatched heteroepitaxy of tetrahedral semiconductors with Si via ZrB2 templates. Chemistry of Materials, 2005. 17(18): pp.4647-4652.
DOI: 10.1021/cm0510918
Google Scholar
[24]
Tolle, J., Kouvetakis, J., Kim, D. -., Mahajan, Chizmeshya, Hu, C. -., Bell, Ponce, Tsong, I., and (2005, C.J. o.P., Epitaxial growth of ZrB2(0001) on Si(111) for III-nitride applications: A review. Chinese J Physics, 2005. 43(1-II): pp.233-248.
DOI: 10.1016/j.jcrysgro.2004.04.020
Google Scholar
[25]
Liu, P. -L., Chizmeshya, A.V.G., and Kouvetakis, J., Structural, electronic, and energetic properties of SiC.
Google Scholar
[1]
heterojunctions: A first-principles density functional theory study. Phys. rev B, 2008. 77: p.035326.
Google Scholar
[26]
Valiev, M., Bylaska, E.J., Govind, N., Kowalski, K., Straatsma, T.P., van Dam, H.J.J., Wang, D., Nieplocha, J., Apra, E., Windus, T.L., and de Jong, W.A., NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun., 2010. 181: pp.1477-1497.
DOI: 10.1016/j.cpc.2010.04.018
Google Scholar