Fracture Mechanics of Y2O3 Ceramics at High Temperatures

Article Preview

Abstract:

Fracture toughness KIc and four-point bending strength σc at high temperature (up to 1500 °C) of Y2O3 ceramics of various grain size were measured. The ceramics were prepared by pressureless air sintering and next hot isostatic pressing of high purity (99.99%) Y2O3 powder. Relative density of about 99 % was achieved. Photos of microstructures revealed small pores distributed mainly inside grains. For smallest grain size (2 - 9 μm) ceramics KIc and σc are almost constant from 20 ° to 1200 °C and next they decrease. For biggest grain size (about 44 μm) they increase up to 800 °C and next they keep constant up to 1200 °C. The micrographs analyses of fracture surfaces indicated that transgranular mode of fracture at room temperature changes to almost intergranular at higher temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

88-93

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.L. Micheli, D.F. Dungan, J.V. Mantese, High-density yttria for practical ceramic applications, J. Am. Ceram. Soc. 75 (1992) 709-711.

DOI: 10.1111/j.1151-2916.1992.tb07863.x

Google Scholar

[2] A.S. Kumar, A.R. Durai, Y. Sornakumar, Yttria ceramics: cutting tool application, Mater. Lett. 58 (2004) 1808-1810.

DOI: 10.1016/j.matlet.2003.11.010

Google Scholar

[3] J. Kong, J.L.K. Takaichi, T. Uematsu, K. Ueda, D.Y. Tang, D.Y. Shen, H. Yagi, T. Yanagitani, A.A. Kaminskii, Diode-pumped Yb: Y2O3 Ceramic laser, Appl. Phys. Lett. 82 (2003) 2556-2558.

DOI: 10.1063/1.1569049

Google Scholar

[4] O. Unal, M. Akinc, Compressive properties of yttrium oxide, J. Am. Ceram. Soc. 79 (1996) 805-808.

Google Scholar

[5] M. Desmaison-Brut, J. Montintin, E. Valin, M. Boncoeur, Influence of processingon the microstructure and mechanical properties of sintered yttrium oxides, J. Am. Ceram. Soc. 78 (1995) 716-722.

DOI: 10.1111/j.1151-2916.1995.tb08238.x

Google Scholar

[6] M. Boniecki, Z. Librant, A. Wajler, W. Wesołowski, H. Węglarz, Fracture toughness, strength and creep of transparent ceramics at high temperature, Ceram. Int. 38 (2012) 4517-4524.

DOI: 10.1016/j.ceramint.2012.02.028

Google Scholar

[7] M. Stuer, Z. Zhao, P. Bowen, Freeze granulation: Powder processing for transparent alumina applications, J. Eur. Ceram. Soc. 32 (2012) 2899-2908.

DOI: 10.1016/j.jeurceramsoc.2012.02.038

Google Scholar

[8] T. Fett, D. Munz, Subcritical crack growth of macrocracks in alumina with R-curve behaviour. J Am. Ceram. Soc. 75 (1992) 958-963.

DOI: 10.1111/j.1151-2916.1992.tb04166.x

Google Scholar

[9] D. R Clarke, K.T. Faber, Fracture of ceramics and glasses, J. Phys. Chem. Sol. 48 (1987) 1115-1157.

Google Scholar