Evaluating Porosity in Cordierite Diesel Particulate Filter Materials: Advanced X-Ray Techniques and New Statistical Analysis Methods

Article Preview

Abstract:

Bi-continuous porous ceramics for filtration applications possess a particularly complicated microstructure, whereby porosity and solid matter are intermingled. Mechanical, thermal, and filtration properties can only be precisely estimated if the morphology of both solid matter and porosity can be quantitatively determined. Using 3D computed tomography (CT) at different resolutions, and several X-ray refraction-based techniques, we quantitatively evaluated porosity and pore orientation in cordierite diesel particulate filter ceramics.Moreover, applying both Fast Fourier Transform (FFT) and a newly developed image analysis algorithm (directional interface variance analysis, DIVA), we quantitatively evaluated porosity and pore orientation. Both the experimental techniques and the statistical approach allow extraction of spatially resolved or average values.Porosity values from synchrotron computed tomography used turn out to agree with mercury intrusion measurements, while pore orientation factors agree with published crystallographic texture data. This latter point also implies that the study of the pore/matter interface is sufficient to describe the morphological properties of these materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

64-69

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Saito, S. -Y. Nishimura, M. Kawano, S. -I. Araki, S. Sukenaga, K. Nakashima, T. Yasukouchi, Fabrication of Nitrogen-Containing Cordierite Ceramics, J. Am. Ceram. Soc. 93 (2010) 2257–2263.

DOI: 10.1111/j.1551-2916.2010.03736.x

Google Scholar

[2] G. Merkel, D. Beall, D. Hickman, M. Vernacotola, Effects of Microstructure and Cell Geometry on Performance of Cordierite Diesel Particulate Filters, SAE Technical Paper 2001-01-0193 (2001).

DOI: 10.4271/2001-01-0193

Google Scholar

[3] Y. Onel, A. Lange, A. Staude, K. Ehrig, A. Kupsch, M.P. Hentschel, T. Wolk, B.R. Müller, G. Bruno, Evaluating porosity in cordierite diesel particulate filter materials. Part 2- Statistical analysis of Computed Tomography Data, J. Ceram. Sci. Tech. 5 (2013).

DOI: 10.4028/www.scientific.net/ast.91.64

Google Scholar

[4] G. Bruno, S. Vogel, Calculation of the Average Coefficient of Thermal Expansion in Oriented Cordierite Polycrystals, J. Am. Ceram. Soc. 91 (2008) 2646-2652.

DOI: 10.1111/j.1551-2916.2008.02485.x

Google Scholar

[5] W.D. Kingery, Factor affecting thermal stress resistance of ceramic materials. J. Amer. Ceram. Soc. 38 (1955) 3-15.

Google Scholar

[6] W.P. Addiego, I.M. Melscoet-Chauvel, US Patent 2007/0142208 A1 (2007).

Google Scholar

[7] G. Bruno, A.M. Efremov, A.N. Levandovsky, B. Clausen, Connecting the macro and microscopic strain response in porous ceramics: modeling and experimental validation. J. Mater. Sci. 46 (2011) 161-173.

DOI: 10.1007/s10853-010-4899-0

Google Scholar

[8] A.M. Efremov, G, Bruno, Modeling the impact of microcracking on the thermoelasticity of porous and microcracked ceramics, Phil. Mag. 93 (2013) 691-717.

DOI: 10.1080/14786435.2012.729867

Google Scholar

[9] G. Tzschichholz, G. Steinborn, M.P. Hentschel, A. Lange, P. Klobes, Characterisation of porous titania yttrium oxide compounds by mercury intrusion porosimetry and X-ray refractometry. J. Porous Mat. 18 (2011) 83-88.

DOI: 10.1007/s10934-010-9358-4

Google Scholar

[10] T. Gordon, A. Shyam, E. Lara-Curzio, The relationship between microstructure and fracture toughness for fibrous materials of diesel particulate filters. J. Amer. Ceram. Soc. 93 (2010) 1120-1126.

DOI: 10.1111/j.1551-2916.2009.03524.x

Google Scholar

[11] L. Andersson, P.T. Larsson, L. Wågberg, L. Bergström, Evaluating Pore Space in Macroporous Ceramics with Water-Based Porosimetry, J. Am. Ceram. Soc. 96 (2013) 1916-(1922).

DOI: 10.1111/jace.12223

Google Scholar

[12] F. Zhao, H.R. Landis, S.J. Skerlos, Modeling of porous filter permeability via image-based stochastic reconstruction of spatial porosity correlations. Environ. Sci. Tech. 39 (2006) 239-247.

DOI: 10.1021/es035228b

Google Scholar

[13] G. Bruno, A.M. Efremov, B. Clausen, A.M. Balagurov, V.N. Simkin, B.R. Wheaton, J.E. Webb, D.W. Brown, On the Stress-Free Lattice Expansion of Porous Cordierite, Acta Mater. 58 (2010) 1994–(2003).

DOI: 10.1016/j.actamat.2009.11.042

Google Scholar

[14] B.R. Müller, A. Lange, M. Harwardt, M.P. Hentschel, B. Illerhaus, J. Goebbels, J. Bamberg, F. Heutling, Refraction computed tomography. MP Mater. Test. 46 (2004) 314-319.

DOI: 10.3139/120.100592

Google Scholar

[15] A. Rack, S. Zabler, B.R. Müller, H. Riesemeier, G. Weidemann, A. Lange, J. Goebbels, M.P. Hentschel, W. Görner, High resolution synchrotron-based radiography and tomography using hard X-rays at the BAMline (BESSY II). Nucl. Instrum. Meth. A586 (2008).

DOI: 10.1016/j.nima.2007.11.020

Google Scholar

[16] D. Chapman, W. Thomlinson, R.E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, D. Sayers, Diffraction enhanced x-ray imaging. Phys. Med. Biol. 42 (1997) 2015-(2025).

DOI: 10.1088/0031-9155/42/11/001

Google Scholar

[17] A. Kupsch, A. Lange, M.P. Hentschel, Y. Onel, T. Wolk, A. Staude, K. Ehrig, B.R. Müller, G. Bruno, Evaluating Porosity in Cordierite Diesel Particulate Filter Materials, Part 1 X-Ray Refraction. J. Ceram. Sci. Tech. 4 (2013) 169-176.

DOI: 10.4028/www.scientific.net/ast.91.64

Google Scholar

[18] G. Bruno, A.M. Efremov, C.P. An, B.R. Wheaton, D.J. Hughes, Connecting the macro and microscopic strain response in porous ceramics. Part II- Microcracking, J. Mater. Sci. 47 (2012) 3674-3689.

DOI: 10.1007/s10853-011-6216-y

Google Scholar