[1]
G. Monrós, M. Llusar, A. García, C. Gargori, R. Galindo, Development of new ceramic dyes. Advances Sci. Tech. 68 (2010), 182-193.
DOI: 10.4028/www.scientific.net/ast.68.182
Google Scholar
[2]
G. Bauxman, Introduction to inorganic high performance pigments, in: E.B. Faulkner, R.J. Schwartz (Eds), High Performance Pigments, 2on ed., Wiley-VCH, Weinheim, 2009, p.3.
Google Scholar
[3]
A. García, M. Llusar, J. Calbo, M.A. Tena, G. Monrós, Low-toxicity red ceramic pigments for porcelainised stoneware from lanthanide-ceria solid solutions, Green Chemistry 3(2001), 238-242.
DOI: 10.1039/b105830b
Google Scholar
[4]
M. Jansen, H.P. Letschert, Inorganic yellow-red pigments without toxic metals, Nature 404 (2000), 980-982.
DOI: 10.1038/35010082
Google Scholar
[5]
P.P. Rao, M.L.P. Reddy, (TiO2)1(CeO2)1-x(RE2O3)x -novel environmental secure pigments, Dyes and Pigments 73 (2007), 292-297.
DOI: 10.1016/j.dyepig.2005.12.004
Google Scholar
[6]
F. Matteucci, C.L. Neto, M. Dondi, G. Cruciani, G. Baldi, A.O. Boschi, Colour development of red perovskite pigment Y(Al, Cr)O3 in various ceramic applications, Adv. Appl. Ceram. 105 (2006), 99-106.
DOI: 10.1179/174367606x103042
Google Scholar
[7]
G. Monrós, J.A. Badenes, A. García, M.A. Tena, El color de la cerámica: Nuevos mecanismos en pigmentos para los nuevos procesados de la industria cerámica, Universitat Jaume I, Castelló de la Plana, 2003 (pp.146-179).
DOI: 10.6035/athenea.2003.11
Google Scholar
[8]
M. Dondi, M. Blosi, D. Gardini, C. Zanelli, P. Zannini, Ink technology for digital decoration of ceramic tiles: an overview, Proceedings of the XIIIth World Congress on Ceramic Tile Quality, QUALICER 2014, Castellón (Spain).
DOI: 10.1016/j.dyepig.2015.12.018
Google Scholar
[9]
V. Sanz, InkJet printing technology for ceramic tile decoration, Proceedings of the XIIIth World Congress on Ceramic Tile Quality, QUALICER 2014, Castellón (Spain).
Google Scholar
[10]
M. Dondi, F. Matteucci, D. Gardini, M. Blosi, A.L. Costa, C. Galassi, G. Baldi, A. Barzanti, E. Cinotti, Industrial Ink-Jet Application of Nano-sized Ceramic Inks, Adv. Sci. Tech. 51 (2006), 174-780.
Google Scholar
[11]
D. Gardini, M. Dondi, A.L. Costa, F. Matteucci, M. Blosi, C. Galassi, G. Baldi, E. Cinotti, Nano-sized ceramic inks for drop-on-demand ink-jet printing in quadrichromy, J. Nanosci. Nanotech. 8 (2008), 1979-(1988).
DOI: 10.1166/jnn.2008.048
Google Scholar
[12]
P.M.T. Cavalcante, M. Dondi, G. Guarini, M. Raimondo, G. Baldi, Colour performance of ceramic nanopigments, Dyes and Pigments, 80 (2009), 226-232.
DOI: 10.1016/j.dyepig.2008.07.004
Google Scholar
[13]
M. Dondi, M. Blosi, D. Gardini, C. Zanelli, Ceramic pigments for digital decoration inks: an overview, cfi/DKG, 89 (2012), E59-E64.
DOI: 10.1016/j.dyepig.2015.12.018
Google Scholar
[14]
J.A. Badenes, J.B. Vicent, M. Llusar, M.A. Tena, G. Monrós, The nature of Pr-ZrSiO4 yellow ceramic pigment, J. Mater. Sci. 37 (2002), 1413-1420.
Google Scholar
[15]
G. Monrós, J. Carda, M.A. Tena, P. Escribano, J. Alarcón, Synthesis of ZrO2–V2O5 pigments by sol-gel methods, Br. Ceram. Trans. J. 90 (1991), 157–160.
Google Scholar
[16]
F. Ren, S. Ishida, N. Takeuchi, Color and vanadium valency in V-doped ZrO2, J. Am. Ceram. Soc. 76 (1993), 1825-1831.
DOI: 10.1111/j.1151-2916.1993.tb06654.x
Google Scholar
[17]
K. Fujiyoshi, H. Yokoyama, Chemical state of vanadium in tin-based yellow pigment, J. Am. Ceram. Soc. 76 (1993), 981-986.
DOI: 10.1111/j.1151-2916.1993.tb05322.x
Google Scholar
[18]
S. Loridant, Determination of the maximum vanadium oxide coverage on SnO2 with a high surface area by Raman spectroscopy, J. Phys. Chem. B 106 (2002), 13273-13279.
DOI: 10.1021/jp0146465
Google Scholar
[19]
S. Sorlí, M.A. Tena, J.A. Badenes, J. Calbo, M. Llusar, G. Monrós, Structure and color of NixA1-3xB2xO2 (A=Ti, Sn; B=Sb, Nb) solid solutions, J. Eur. Ceram. Soc. 24 (2004), 2425-2432.
DOI: 10.1016/j.jeurceramsoc.2003.07.012
Google Scholar
[20]
M. Dondi, G. Cruciani, G. Guarini, F. Matteucci, M. Raimondo, The role of counterions (Mo, Nb, Sb, W) in Cr-, Mn-, Ni- and V-doped rutile ceramic pigments. Part 2. Colour and technological properties, Ceram. Int. 32 (2006), 393-405.
DOI: 10.1016/j.ceramint.2005.03.015
Google Scholar
[21]
N.M. Wainwright, Lead Antimonate Yellow, in: R.L. Feller (Ed. ), Artist's pigments: a handbook of their history and characteristics, vol 1, National Gallery of Art, Washington DC, 1986, p.219.
Google Scholar
[22]
M. Dondi, F. Matteucci, I. Zama, G. Cruciani, High-performance yellow ceramic pigments Zr(Ti1-x-ySnx-yVyMy)O4 (M = Al, In, Y): crystal structure, colouring mechanism and technological properties, Mat. Res. Bull. 42 (2007), 64-76.
DOI: 10.1016/j.materresbull.2006.05.014
Google Scholar
[23]
V. De la Luz, M. Prades, H. Beltrán, E. Cordoncillo, Environmentally-friendly yellow pigment based on Tb and M (M=Ca or Ba) co-doped Y2O3, J. Eur. Ceram. Soc. 33 (2013), 3359-3368.
DOI: 10.1016/j.jeurceramsoc.2013.05.021
Google Scholar
[24]
G. Bayer, Thermal expansion characteristics and stability of pseudobrookite-type compounds, Me3O5, J. Less-Common Metals 24 (1971), 129-1.
DOI: 10.1016/0022-5088(71)90091-9
Google Scholar
[25]
M. Dondi, F. Matteucci, G. Cruciani, G. Gasparoto, D.M. Tobaldi, Pseudobrookite ceramic pigments: Crystal structural, optical and technological properties, Solid state sciences 9 (2007), 362-369.
DOI: 10.1016/j.solidstatesciences.2007.03.001
Google Scholar
[26]
F. Matteucci, G. Cruciani, M. Dondi , G. Gasparotto, D.M. Tobaldi, Crystal structure, optical properties and colouring performance of karrooite MgTi2O5 ceramic pigments. J Solid State Chem. 180 (2007), 3196-3210.
DOI: 10.1016/j.jssc.2007.08.029
Google Scholar
[27]
M. Dondi, T. Lyubenova, J.B. Carda, M. Ocaña, M-Doped Al2TiO5 (M=Cr, Mn, Co) Solid Solutions and their Use as Ceramic Pigments, J. Am. Ceram. Soc. 92 (2009), 1972-(1980).
DOI: 10.1111/j.1551-2916.2009.03172.x
Google Scholar
[28]
M. Llusar, E. García, M.T. García, J.A. Badenes, G. Monrós: submitted to Journal of the European Ceramic Society (2014).
Google Scholar
[29]
R. P Liferovich, R.H. Mitchell, Rhombohedral ilmenite group nickel titanates with Zn, Mg, and Mn: synthesis and crystal structures, Phys. Chem. Minerals 32 (2005), 442-449.
DOI: 10.1007/s00269-005-0020-7
Google Scholar
[30]
R.G. Burs, Mineralogical Applications of Crystal Field Theory, second ed., Cambridge University, (1992).
Google Scholar
[31]
G. Baldi, M. Bitossi and V. Del Conte, International Patent PCT/EP96/01028, WO 96/28384G (1996).
Google Scholar
[32]
M. Kato, T. Takahashi, Synthesis of Cr-doped NdAlO3-Al2O3 reddish pink pigment. J. Mat. Sci. Lett. 20 (2001), 413-414.
Google Scholar
[33]
Y. Marinova, J.M. Hohenberger, E. Cordoncillo, P. Escribano, J.B. Carda, Study of solid solution, with perovskite structure, for application in the field of ceramic pigments. J. Eur. Ceram. Soc. 23 (2003), 213-220.
DOI: 10.1016/s0955-2219(02)00182-6
Google Scholar
[34]
G. Baldi, G, N. Dolen, A. Barzanti, V. Faso, Synthesis of a new class of red pigments based on perovskite-type lattice AxB(2-x-y)CryO3 with 0. 90<x<1 and 0. 05<y<0. 12, A=Y, lanthanides, B=Al for use in body stain and high temperature glazes, Key Engineering Materials 264-268 (2004).
DOI: 10.4028/www.scientific.net/kem.264-268.1545
Google Scholar
[35]
J.K. Kar, R. Stevens, C.R. Bowen, Processing and characterization of various mixed oxide and perovskite-based pigments for high temperature ceramic colouring application, J. Alloys Comp. 461 (2008), 77-84.
DOI: 10.1016/j.jallcom.2007.07.044
Google Scholar
[36]
T. Stoyanova, J.B. Carda, M. Ocaña, Synthesis by pyrolysis of aerosols and ceramic application of Cr-doped CaYAlO4 red-orange pigments, J. Eur. Ceram. Soc. 29 (2009), 2193-2198.
DOI: 10.1016/j.jeurceramsoc.2009.01.020
Google Scholar
[37]
E. López-Navarrete, V.M. Orera, F.J. Lázaro, J.B. Carda, M. Ocaña, Preparation through aerosols of Cr-doped Y2Sn2O7 (pyrochlore) red-shade pigments and determination of the Cr oxidation state, J. Am. Ceram. Soc. 87 (2004), 2108-2113.
DOI: 10.1111/j.1151-2916.2004.tb06367.x
Google Scholar
[38]
C. Gargori, R. Galindo, M. Llusar, S. Cerro, A. García, G. Monrós, New chromium-calcium titanate red ceramic pigment, Adv. Sci. Tech. 68 (2010), 208-212.
DOI: 10.4028/www.scientific.net/ast.68.208
Google Scholar
[39]
A. García, R. Galindo, C. Gargori, S. Cerro, M. LLusar, G. Monrós, Ceramic pigments based on chromium doped alkaline earth titanates, Ceram. Int. 39 (2013), 4125-4132.
DOI: 10.1016/j.ceramint.2012.10.267
Google Scholar
[40]
C. Gargori, S. Cerro, M. Llusar, G. Monros, Ceramic Pigments based on armacolite doped with vanadium by MOD methods, Proceedings of the XIIIth World Congress on Ceramic Tile Quality, QUALICER 2014, Castellón (Spain).
Google Scholar
[41]
C. Zanelli, G.L. Güngor, A. Kara, M. Blosi, M. Dondi, D. Gardini, A travel into ceramic pigments micronizing, Proceedings of the XIIIth World Congress on Ceramic Tile Quality, QUALICER 2014, Castellón (Spain).
DOI: 10.1016/j.ceramint.2015.01.093
Google Scholar
[42]
M. Llusar, L. Vitásková, P. Šulcová, M.A. Tena, J.A. Badenes, G. Monrós, Red ceramic pigments of terbium-doped ceria prepared through classical and non-conventional coprecipitation routes, J. Eur. Ceram. Soc. 30 (2010), 37-52.
DOI: 10.1016/j.jeurceramsoc.2009.08.005
Google Scholar
[43]
C. Gargori, S. Cerro, R. Galindo, G. Monrós, In sity synthesis of orange rutile ceramic pigments by non-conventional methods, Ceram. Int. 36 (2010), 23-31.
DOI: 10.1016/j.ceramint.2009.06.013
Google Scholar
[44]
A. García, M. Llusar, J. Badenes, M. A. Tena, G. Monrós, Encapsulation of hematite in zircon by microemulsion and sol-gel methods, J. Sol-Gel Sci. and Tech. 27 (2003), 267-275.
DOI: 10.1007/s10971-006-6573-1
Google Scholar
[45]
G. Herrera, N. Montoya, J. Alarcón, Microstructure of Fe-ZrSiO4 solid solutions prepared from gels, J. Eur. Ceram. Soc. 32 (2012), 227-234.
DOI: 10.1016/j.jeurceramsoc.2011.08.014
Google Scholar
[46]
T. Stoyanova, M. Ocaña, J. Carda, Brown ceramic pigments based on chromium(III)-doped titanite obtanined by spray pyrolysis, Dyes and Pigments 79 (2008), 265-269.
DOI: 10.1016/j.dyepig.2008.03.009
Google Scholar
[47]
R. Pozas, V.M. Orera, M. Ocaña, Hydrothermal synthesis of Co-doped willemite powders with controlled particle size and shape, J. Eur. Ceram. Soc. 25 (2005), 3165-3172.
DOI: 10.1016/j.jeurceramsoc.2004.07.006
Google Scholar
[48]
M. Blosi, M. Dondi, S. Albonetti, G. Baldi, A. Barzanti, C. Zanelli, Microwave-assisted synthesis of Pr-ZrSiO4, V-ZrSiO4 and Cr-YAlO3 ceramic pigments, J. Eur. Ceram. Soc. 29 (2009), 2951-2957.
DOI: 10.1016/j.jeurceramsoc.2009.04.022
Google Scholar
[49]
F. Bondioli, A.M. Ferrari, L. Lusvarghi, T. Manfredini, S. Nannarone, L. Pasquali, G. Selvaggi, Syntesis and characterization of praseodymium-doped ceria powders by a microwave-assisted hydrothermal (MH) route, J. Mater. Chem. 15 (2005).
DOI: 10.1039/b415628e
Google Scholar
[50]
S.T. Aruna, S. Ghosh, K.C. Patil, Combustion synthesis and properties of Ce1-xPrxO2-d red ceramic pigments, Int. J. Inorg. Mater. 3 (2001), 387-392.
DOI: 10.1016/s1466-6049(01)00020-4
Google Scholar
[51]
M. Blosi, S. Albonetti, M. Dondi, A.L. Costa, M. Ardit, G. Cruciani, Sol-gel combustion synthesis of chromium doped yttrium aluminum perovskites, J. Sol-Gel Sci. Technol. 50 (2009), 449-455.
DOI: 10.1007/s10971-009-1906-5
Google Scholar
[52]
C. Gargori, R. Galindo, S. Cerro, M. Llusar, A. García, J. Badenes, G. Monrós, Ceramic pigments based on chromium and vanadium doped CaTiO3 perovskite obtained by Metal Organic Decomposition (MOD), Bol. Soc. Esp. Ceram. Vidr. 51 (2012), 343-352.
DOI: 10.1016/j.ceramint.2012.02.019
Google Scholar
[53]
S. Cerro, N. Fas, C. Gargori, M. Llusar, G. Monrós, In situ and classical karrooite ceramic pigments obtained by MOD and sol-gel methods, Proceedings of the 8º Encuentro Franco-Español de Química y Física del Estado Sólido, 2014, Vila-real (Spain).
Google Scholar
[54]
S. Ponce-Catañeda, J.R. Martínez, F. Ruiz, S., Palomares-Sánchez, O. Domínguez, Synthesis of Fe2O3 species embedded in a silica xerogel matrix: a comparative study. J. Sol–Gel Sci. Technol. 25 (2002), 29–36.
DOI: 10.1023/a:1016084825970
Google Scholar
[55]
M. Llusar, V. Royo, J.A. Badenes, M.A. Tena, G. Monrós, Nanocomposite Fe2O3-SiO2 inclusion pigments from post-functionalized mesoporous silicas, J. Eur. Ceram. Soc. 20 (2009), 3319-3332.
DOI: 10.1016/j.jeurceramsoc.2009.07.018
Google Scholar
[56]
C. Feldmann, H.O. Jungk, Polyol-mediated preparation of oxide particles, Angew. Chem. Int. Ed. 40 (2001), 359-362.
DOI: 10.1002/1521-3773(20010119)40:2<359::aid-anie359>3.0.co;2-b
Google Scholar
[57]
C. Feldmann, Polyol-mediated synthesis of nanoscale functional materials, Adv. Funct. Mater. 13 (2003), 101-107.
DOI: 10.1002/adfm.200390014
Google Scholar
[58]
M. Blosi, S. Albonetti, F. Gatti, M. Dondi, A. Migliori, L. Ortolani, V. Morandi, G. Baldi, Au, Ag and Au-Ag nanoparticles: microwave-assisted synthesis in water and applications in ceramic and catalysis, Nanotech. 1 (2010).
DOI: 10.1016/s0167-2991(10)75122-3
Google Scholar
[59]
M. Blosi, S. Albonetti, M. Dondi, G. Baldi and A. Baarzanti, Patent WO 100107 PCT/EP2010/ 052534 (2010).
Google Scholar
[60]
D. Wang, X. Liang, Y. Li, Preparation of nearly monodisperse nanoscale inorganic pigments, Chem. Asian. J. 1-2 (2006), 91-94.
DOI: 10.1002/asia.200600078
Google Scholar
[61]
A. Atkinson, J. Doorbar, A. Hudd, D.L. Segal, A. White, Continuous ink-jet printing using sol-gel ceramic, inks, J. Sol-Gel Sci. Technol. 8 (1997), 1093-1097.
DOI: 10.1007/bf02436989
Google Scholar
[62]
C. Lin, Y. Li, M. Yu, P. Yang, J. Lin, A facile synthesis and characterization of monodisperse spherical pigment particles with a core/shell structure, Adv. Funct. Mater. 17 (2007), 1459-1465.
DOI: 10.1002/adfm.200600775
Google Scholar
[63]
K. Doermbach, G. Agrawal, M. Servos, S. Schipmann, S. Thies, U. Klemradt, A. Pich, Silica-coating of hematite nanoparticles using reactive water-soluble polyalkoxysiloxanes, Particle & Particle Syst. Charact. 31 (2014), 365-373.
DOI: 10.1002/ppsc.201300234
Google Scholar
[64]
S.Y. Lian, H.T. Li, X.D. He, Z.H. Kang, Y. Liu, S.T. Lee, Hematite homogeneous core/shell hierarchical spheres: surfactant-free solvothermal preparation and their improved catalytic property of selective oxidation, J. Sol. State Chem. 185 (2012).
DOI: 10.1016/j.jssc.2011.11.003
Google Scholar
[65]
J.H. Zhang, A. Thurber, C. Hanna, A. Punnoose, Highly shape-selective synthesis, silica coating, self-assembly, and magnetic hydrogen sensing of hematite nanoparticles, Langmuir 26 (2010), 5273-5278.
DOI: 10.1021/la903544a
Google Scholar
[66]
M. Penpolcharoen, R. Amal, V. Chen, M. Brungs, Role and fate of hematite in titania coated hematite photocatalysts, J. Adv. Oxid. Technol. 5 (2002), 93-106.
DOI: 10.1515/jaots-2002-0112
Google Scholar
[67]
F. Zhao, Y.F. Gao, H.J. Luo, HJ (Luo, Hongjie), Reactive formation of zircon inclusion pigments by deposition and subsequent annealing of a zirconia and silica double shell, Langmuir 25 (2009), 13295-13297.
DOI: 10.1021/la903197t
Google Scholar