New Ceramic Pigments for the Coloration of Ceramic Glazes

Article Preview

Abstract:

In this communication we provide some examples of hot research topics in the field of ceramic pigments. The more classical approach of finding new host lattices or chromophores is first illustrated with recent examples of new formulations for yellow-orange, reddish-brown and blue ceramic pigments based on pseudobrookites and related titanates. Then we highlight the advantages of using non-conventional preparation routes, which can provide different pigmenting alternatives for the emerging ink-jet printing technology, such as the development of nanoor sub-micron pigments and “ceramic inks”, or the use of appropriate precursors for in situ-generating pigments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

148-158

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Monrós, M. Llusar, A. García, C. Gargori, R. Galindo, Development of new ceramic dyes. Advances Sci. Tech. 68 (2010), 182-193.

DOI: 10.4028/www.scientific.net/ast.68.182

Google Scholar

[2] G. Bauxman, Introduction to inorganic high performance pigments, in: E.B. Faulkner, R.J. Schwartz (Eds), High Performance Pigments, 2on ed., Wiley-VCH, Weinheim, 2009, p.3.

Google Scholar

[3] A. García, M. Llusar, J. Calbo, M.A. Tena, G. Monrós, Low-toxicity red ceramic pigments for porcelainised stoneware from lanthanide-ceria solid solutions, Green Chemistry 3(2001), 238-242.

DOI: 10.1039/b105830b

Google Scholar

[4] M. Jansen, H.P. Letschert, Inorganic yellow-red pigments without toxic metals, Nature 404 (2000), 980-982.

DOI: 10.1038/35010082

Google Scholar

[5] P.P. Rao, M.L.P. Reddy, (TiO2)1(CeO2)1-x(RE2O3)x -novel environmental secure pigments, Dyes and Pigments 73 (2007), 292-297.

DOI: 10.1016/j.dyepig.2005.12.004

Google Scholar

[6] F. Matteucci, C.L. Neto, M. Dondi, G. Cruciani, G. Baldi, A.O. Boschi, Colour development of red perovskite pigment Y(Al, Cr)O3 in various ceramic applications, Adv. Appl. Ceram. 105 (2006), 99-106.

DOI: 10.1179/174367606x103042

Google Scholar

[7] G. Monrós, J.A. Badenes, A. García, M.A. Tena, El color de la cerámica: Nuevos mecanismos en pigmentos para los nuevos procesados de la industria cerámica, Universitat Jaume I, Castelló de la Plana, 2003 (pp.146-179).

DOI: 10.6035/athenea.2003.11

Google Scholar

[8] M. Dondi, M. Blosi, D. Gardini, C. Zanelli, P. Zannini, Ink technology for digital decoration of ceramic tiles: an overview, Proceedings of the XIIIth World Congress on Ceramic Tile Quality, QUALICER 2014, Castellón (Spain).

DOI: 10.1016/j.dyepig.2015.12.018

Google Scholar

[9] V. Sanz, InkJet printing technology for ceramic tile decoration, Proceedings of the XIIIth World Congress on Ceramic Tile Quality, QUALICER 2014, Castellón (Spain).

Google Scholar

[10] M. Dondi, F. Matteucci, D. Gardini, M. Blosi, A.L. Costa, C. Galassi, G. Baldi, A. Barzanti, E. Cinotti, Industrial Ink-Jet Application of Nano-sized Ceramic Inks, Adv. Sci. Tech. 51 (2006), 174-780.

Google Scholar

[11] D. Gardini, M. Dondi, A.L. Costa, F. Matteucci, M. Blosi, C. Galassi, G. Baldi, E. Cinotti, Nano-sized ceramic inks for drop-on-demand ink-jet printing in quadrichromy, J. Nanosci. Nanotech. 8 (2008), 1979-(1988).

DOI: 10.1166/jnn.2008.048

Google Scholar

[12] P.M.T. Cavalcante, M. Dondi, G. Guarini, M. Raimondo, G. Baldi, Colour performance of ceramic nanopigments, Dyes and Pigments, 80 (2009), 226-232.

DOI: 10.1016/j.dyepig.2008.07.004

Google Scholar

[13] M. Dondi, M. Blosi, D. Gardini, C. Zanelli, Ceramic pigments for digital decoration inks: an overview, cfi/DKG, 89 (2012), E59-E64.

DOI: 10.1016/j.dyepig.2015.12.018

Google Scholar

[14] J.A. Badenes, J.B. Vicent, M. Llusar, M.A. Tena, G. Monrós, The nature of Pr-ZrSiO4 yellow ceramic pigment, J. Mater. Sci. 37 (2002), 1413-1420.

Google Scholar

[15] G. Monrós, J. Carda, M.A. Tena, P. Escribano, J. Alarcón, Synthesis of ZrO2–V2O5 pigments by sol-gel methods, Br. Ceram. Trans. J. 90 (1991), 157–160.

Google Scholar

[16] F. Ren, S. Ishida, N. Takeuchi, Color and vanadium valency in V-doped ZrO2, J. Am. Ceram. Soc. 76 (1993), 1825-1831.

DOI: 10.1111/j.1151-2916.1993.tb06654.x

Google Scholar

[17] K. Fujiyoshi, H. Yokoyama, Chemical state of vanadium in tin-based yellow pigment, J. Am. Ceram. Soc. 76 (1993), 981-986.

DOI: 10.1111/j.1151-2916.1993.tb05322.x

Google Scholar

[18] S. Loridant, Determination of the maximum vanadium oxide coverage on SnO2 with a high surface area by Raman spectroscopy, J. Phys. Chem. B 106 (2002), 13273-13279.

DOI: 10.1021/jp0146465

Google Scholar

[19] S. Sorlí, M.A. Tena, J.A. Badenes, J. Calbo, M. Llusar, G. Monrós, Structure and color of NixA1-3xB2xO2 (A=Ti, Sn; B=Sb, Nb) solid solutions, J. Eur. Ceram. Soc. 24 (2004), 2425-2432.

DOI: 10.1016/j.jeurceramsoc.2003.07.012

Google Scholar

[20] M. Dondi, G. Cruciani, G. Guarini, F. Matteucci, M. Raimondo, The role of counterions (Mo, Nb, Sb, W) in Cr-, Mn-, Ni- and V-doped rutile ceramic pigments. Part 2. Colour and technological properties, Ceram. Int. 32 (2006), 393-405.

DOI: 10.1016/j.ceramint.2005.03.015

Google Scholar

[21] N.M. Wainwright, Lead Antimonate Yellow, in: R.L. Feller (Ed. ), Artist's pigments: a handbook of their history and characteristics, vol 1, National Gallery of Art, Washington DC, 1986, p.219.

Google Scholar

[22] M. Dondi, F. Matteucci, I. Zama, G. Cruciani, High-performance yellow ceramic pigments Zr(Ti1-x-ySnx-yVyMy)O4 (M = Al, In, Y): crystal structure, colouring mechanism and technological properties, Mat. Res. Bull. 42 (2007), 64-76.

DOI: 10.1016/j.materresbull.2006.05.014

Google Scholar

[23] V. De la Luz, M. Prades, H. Beltrán, E. Cordoncillo, Environmentally-friendly yellow pigment based on Tb and M (M=Ca or Ba) co-doped Y2O3, J. Eur. Ceram. Soc. 33 (2013), 3359-3368.

DOI: 10.1016/j.jeurceramsoc.2013.05.021

Google Scholar

[24] G. Bayer, Thermal expansion characteristics and stability of pseudobrookite-type compounds, Me3O5, J. Less-Common Metals 24 (1971), 129-1.

DOI: 10.1016/0022-5088(71)90091-9

Google Scholar

[25] M. Dondi, F. Matteucci, G. Cruciani, G. Gasparoto, D.M. Tobaldi, Pseudobrookite ceramic pigments: Crystal structural, optical and technological properties, Solid state sciences 9 (2007), 362-369.

DOI: 10.1016/j.solidstatesciences.2007.03.001

Google Scholar

[26] F. Matteucci, G. Cruciani, M. Dondi , G. Gasparotto, D.M. Tobaldi, Crystal structure, optical properties and colouring performance of karrooite MgTi2O5 ceramic pigments. J Solid State Chem. 180 (2007), 3196-3210.

DOI: 10.1016/j.jssc.2007.08.029

Google Scholar

[27] M. Dondi, T. Lyubenova, J.B. Carda, M. Ocaña, M-Doped Al2TiO5 (M=Cr, Mn, Co) Solid Solutions and their Use as Ceramic Pigments, J. Am. Ceram. Soc. 92 (2009), 1972-(1980).

DOI: 10.1111/j.1551-2916.2009.03172.x

Google Scholar

[28] M. Llusar, E. García, M.T. García, J.A. Badenes, G. Monrós: submitted to Journal of the European Ceramic Society (2014).

Google Scholar

[29] R. P Liferovich, R.H. Mitchell, Rhombohedral ilmenite group nickel titanates with Zn, Mg, and Mn: synthesis and crystal structures, Phys. Chem. Minerals 32 (2005), 442-449.

DOI: 10.1007/s00269-005-0020-7

Google Scholar

[30] R.G. Burs, Mineralogical Applications of Crystal Field Theory, second ed., Cambridge University, (1992).

Google Scholar

[31] G. Baldi, M. Bitossi and V. Del Conte, International Patent PCT/EP96/01028, WO 96/28384G (1996).

Google Scholar

[32] M. Kato, T. Takahashi, Synthesis of Cr-doped NdAlO3-Al2O3 reddish pink pigment. J. Mat. Sci. Lett. 20 (2001), 413-414.

Google Scholar

[33] Y. Marinova, J.M. Hohenberger, E. Cordoncillo, P. Escribano, J.B. Carda, Study of solid solution, with perovskite structure, for application in the field of ceramic pigments. J. Eur. Ceram. Soc. 23 (2003), 213-220.

DOI: 10.1016/s0955-2219(02)00182-6

Google Scholar

[34] G. Baldi, G, N. Dolen, A. Barzanti, V. Faso, Synthesis of a new class of red pigments based on perovskite-type lattice AxB(2-x-y)CryO3 with 0. 90<x<1 and 0. 05<y<0. 12, A=Y, lanthanides, B=Al for use in body stain and high temperature glazes, Key Engineering Materials 264-268 (2004).

DOI: 10.4028/www.scientific.net/kem.264-268.1545

Google Scholar

[35] J.K. Kar, R. Stevens, C.R. Bowen, Processing and characterization of various mixed oxide and perovskite-based pigments for high temperature ceramic colouring application, J. Alloys Comp. 461 (2008), 77-84.

DOI: 10.1016/j.jallcom.2007.07.044

Google Scholar

[36] T. Stoyanova, J.B. Carda, M. Ocaña, Synthesis by pyrolysis of aerosols and ceramic application of Cr-doped CaYAlO4 red-orange pigments, J. Eur. Ceram. Soc. 29 (2009), 2193-2198.

DOI: 10.1016/j.jeurceramsoc.2009.01.020

Google Scholar

[37] E. López-Navarrete, V.M. Orera, F.J. Lázaro, J.B. Carda, M. Ocaña, Preparation through aerosols of Cr-doped Y2Sn2O7 (pyrochlore) red-shade pigments and determination of the Cr oxidation state, J. Am. Ceram. Soc. 87 (2004), 2108-2113.

DOI: 10.1111/j.1151-2916.2004.tb06367.x

Google Scholar

[38] C. Gargori, R. Galindo, M. Llusar, S. Cerro, A. García, G. Monrós, New chromium-calcium titanate red ceramic pigment, Adv. Sci. Tech. 68 (2010), 208-212.

DOI: 10.4028/www.scientific.net/ast.68.208

Google Scholar

[39] A. García, R. Galindo, C. Gargori, S. Cerro, M. LLusar, G. Monrós, Ceramic pigments based on chromium doped alkaline earth titanates, Ceram. Int. 39 (2013), 4125-4132.

DOI: 10.1016/j.ceramint.2012.10.267

Google Scholar

[40] C. Gargori, S. Cerro, M. Llusar, G. Monros, Ceramic Pigments based on armacolite doped with vanadium by MOD methods, Proceedings of the XIIIth World Congress on Ceramic Tile Quality, QUALICER 2014, Castellón (Spain).

Google Scholar

[41] C. Zanelli, G.L. Güngor, A. Kara, M. Blosi, M. Dondi, D. Gardini, A travel into ceramic pigments micronizing, Proceedings of the XIIIth World Congress on Ceramic Tile Quality, QUALICER 2014, Castellón (Spain).

DOI: 10.1016/j.ceramint.2015.01.093

Google Scholar

[42] M. Llusar, L. Vitásková, P. Šulcová, M.A. Tena, J.A. Badenes, G. Monrós, Red ceramic pigments of terbium-doped ceria prepared through classical and non-conventional coprecipitation routes, J. Eur. Ceram. Soc. 30 (2010), 37-52.

DOI: 10.1016/j.jeurceramsoc.2009.08.005

Google Scholar

[43] C. Gargori, S. Cerro, R. Galindo, G. Monrós, In sity synthesis of orange rutile ceramic pigments by non-conventional methods, Ceram. Int. 36 (2010), 23-31.

DOI: 10.1016/j.ceramint.2009.06.013

Google Scholar

[44] A. García, M. Llusar, J. Badenes, M. A. Tena, G. Monrós, Encapsulation of hematite in zircon by microemulsion and sol-gel methods, J. Sol-Gel Sci. and Tech. 27 (2003), 267-275.

DOI: 10.1007/s10971-006-6573-1

Google Scholar

[45] G. Herrera, N. Montoya, J. Alarcón, Microstructure of Fe-ZrSiO4 solid solutions prepared from gels, J. Eur. Ceram. Soc. 32 (2012), 227-234.

DOI: 10.1016/j.jeurceramsoc.2011.08.014

Google Scholar

[46] T. Stoyanova, M. Ocaña, J. Carda, Brown ceramic pigments based on chromium(III)-doped titanite obtanined by spray pyrolysis, Dyes and Pigments 79 (2008), 265-269.

DOI: 10.1016/j.dyepig.2008.03.009

Google Scholar

[47] R. Pozas, V.M. Orera, M. Ocaña, Hydrothermal synthesis of Co-doped willemite powders with controlled particle size and shape, J. Eur. Ceram. Soc. 25 (2005), 3165-3172.

DOI: 10.1016/j.jeurceramsoc.2004.07.006

Google Scholar

[48] M. Blosi, M. Dondi, S. Albonetti, G. Baldi, A. Barzanti, C. Zanelli, Microwave-assisted synthesis of Pr-ZrSiO4, V-ZrSiO4 and Cr-YAlO3 ceramic pigments, J. Eur. Ceram. Soc. 29 (2009), 2951-2957.

DOI: 10.1016/j.jeurceramsoc.2009.04.022

Google Scholar

[49] F. Bondioli, A.M. Ferrari, L. Lusvarghi, T. Manfredini, S. Nannarone, L. Pasquali, G. Selvaggi, Syntesis and characterization of praseodymium-doped ceria powders by a microwave-assisted hydrothermal (MH) route, J. Mater. Chem. 15 (2005).

DOI: 10.1039/b415628e

Google Scholar

[50] S.T. Aruna, S. Ghosh, K.C. Patil, Combustion synthesis and properties of Ce1-xPrxO2-d red ceramic pigments, Int. J. Inorg. Mater. 3 (2001), 387-392.

DOI: 10.1016/s1466-6049(01)00020-4

Google Scholar

[51] M. Blosi, S. Albonetti, M. Dondi, A.L. Costa, M. Ardit, G. Cruciani, Sol-gel combustion synthesis of chromium doped yttrium aluminum perovskites, J. Sol-Gel Sci. Technol. 50 (2009), 449-455.

DOI: 10.1007/s10971-009-1906-5

Google Scholar

[52] C. Gargori, R. Galindo, S. Cerro, M. Llusar, A. García, J. Badenes, G. Monrós, Ceramic pigments based on chromium and vanadium doped CaTiO3 perovskite obtained by Metal Organic Decomposition (MOD), Bol. Soc. Esp. Ceram. Vidr. 51 (2012), 343-352.

DOI: 10.1016/j.ceramint.2012.02.019

Google Scholar

[53] S. Cerro, N. Fas, C. Gargori, M. Llusar, G. Monrós, In situ and classical karrooite ceramic pigments obtained by MOD and sol-gel methods, Proceedings of the 8º Encuentro Franco-Español de Química y Física del Estado Sólido, 2014, Vila-real (Spain).

Google Scholar

[54] S. Ponce-Catañeda, J.R. Martínez, F. Ruiz, S., Palomares-Sánchez, O. Domínguez, Synthesis of Fe2O3 species embedded in a silica xerogel matrix: a comparative study. J. Sol–Gel Sci. Technol. 25 (2002), 29–36.

DOI: 10.1023/a:1016084825970

Google Scholar

[55] M. Llusar, V. Royo, J.A. Badenes, M.A. Tena, G. Monrós, Nanocomposite Fe2O3-SiO2 inclusion pigments from post-functionalized mesoporous silicas, J. Eur. Ceram. Soc. 20 (2009), 3319-3332.

DOI: 10.1016/j.jeurceramsoc.2009.07.018

Google Scholar

[56] C. Feldmann, H.O. Jungk, Polyol-mediated preparation of oxide particles, Angew. Chem. Int. Ed. 40 (2001), 359-362.

DOI: 10.1002/1521-3773(20010119)40:2<359::aid-anie359>3.0.co;2-b

Google Scholar

[57] C. Feldmann, Polyol-mediated synthesis of nanoscale functional materials, Adv. Funct. Mater. 13 (2003), 101-107.

DOI: 10.1002/adfm.200390014

Google Scholar

[58] M. Blosi, S. Albonetti, F. Gatti, M. Dondi, A. Migliori, L. Ortolani, V. Morandi, G. Baldi, Au, Ag and Au-Ag nanoparticles: microwave-assisted synthesis in water and applications in ceramic and catalysis, Nanotech. 1 (2010).

DOI: 10.1016/s0167-2991(10)75122-3

Google Scholar

[59] M. Blosi, S. Albonetti, M. Dondi, G. Baldi and A. Baarzanti, Patent WO 100107 PCT/EP2010/ 052534 (2010).

Google Scholar

[60] D. Wang, X. Liang, Y. Li, Preparation of nearly monodisperse nanoscale inorganic pigments, Chem. Asian. J. 1-2 (2006), 91-94.

DOI: 10.1002/asia.200600078

Google Scholar

[61] A. Atkinson, J. Doorbar, A. Hudd, D.L. Segal, A. White, Continuous ink-jet printing using sol-gel ceramic, inks, J. Sol-Gel Sci. Technol. 8 (1997), 1093-1097.

DOI: 10.1007/bf02436989

Google Scholar

[62] C. Lin, Y. Li, M. Yu, P. Yang, J. Lin, A facile synthesis and characterization of monodisperse spherical pigment particles with a core/shell structure, Adv. Funct. Mater. 17 (2007), 1459-1465.

DOI: 10.1002/adfm.200600775

Google Scholar

[63] K. Doermbach, G. Agrawal, M. Servos, S. Schipmann, S. Thies, U. Klemradt, A. Pich, Silica-coating of hematite nanoparticles using reactive water-soluble polyalkoxysiloxanes, Particle & Particle Syst. Charact. 31 (2014), 365-373.

DOI: 10.1002/ppsc.201300234

Google Scholar

[64] S.Y. Lian, H.T. Li, X.D. He, Z.H. Kang, Y. Liu, S.T. Lee, Hematite homogeneous core/shell hierarchical spheres: surfactant-free solvothermal preparation and their improved catalytic property of selective oxidation, J. Sol. State Chem. 185 (2012).

DOI: 10.1016/j.jssc.2011.11.003

Google Scholar

[65] J.H. Zhang, A. Thurber, C. Hanna, A. Punnoose, Highly shape-selective synthesis, silica coating, self-assembly, and magnetic hydrogen sensing of hematite nanoparticles, Langmuir 26 (2010), 5273-5278.

DOI: 10.1021/la903544a

Google Scholar

[66] M. Penpolcharoen, R. Amal, V. Chen, M. Brungs, Role and fate of hematite in titania coated hematite photocatalysts, J. Adv. Oxid. Technol. 5 (2002), 93-106.

DOI: 10.1515/jaots-2002-0112

Google Scholar

[67] F. Zhao, Y.F. Gao, H.J. Luo, HJ (Luo, Hongjie), Reactive formation of zircon inclusion pigments by deposition and subsequent annealing of a zirconia and silica double shell, Langmuir 25 (2009), 13295-13297.

DOI: 10.1021/la903197t

Google Scholar