Vitrification and Sinter-Crystallization of Iron-Rich Industrial Wastes

Article Preview

Abstract:

Results about the vitrification of several hazardous iron-rich industrial wastes (from productions of Zn and Cu metals, as well as EAFD and MSWA) and the usage of obtained glasses for synthesise of sintered glass-ceramics are summarises. It is shown that the appropriated method of sinter-crystallization mainly depends on the crystallization trend of used glasses. When the parent composition is characterised by formation of a moderate amount of crystal phase low temperature sintering with short crystallization step in the interval 800-900 °C can be used. In addition, attractive granite-like building glass-ceramic can be obtained by mixing fine and coarse glass frits and “free” sintering in refractory moulds at 1000-1050 °C. Contrary, when intensive phase formation carries out the crystallization inhibits the sintering resulting in specimens with scarce degree of densification. However, in some cases a secondary densification process occurs at temperatures near to the eutectic ones, leading to well sintered samples with higher crystallinity and improved mechanical properties. It is also highlighted that the preventing of Fe2+oxidation by using inert atmosphere during the heat-treatments leads to a decreasing of sintering temperature, finer crystalline structure and additional enhancement of the mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

174-183

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.W. Donald, Waste immobilization in glass and ceramic based hosts: radioactive, toxic and hazardous wastes, John Wiley & Sons, (2010).

DOI: 10.1002/9781444319354

Google Scholar

[2] P. Colombo, G. Brusatin, E. Bernardo, G. Scarinci, Inertization and reuse of waste materials by vitrification and fabrication of glass-based products, Curr. Opin. Solid St., Mat. 7 (2003) 225-239.

DOI: 10.1016/j.cossms.2003.08.002

Google Scholar

[3] P. A Bingham, R. J. Hand, Vitrification of toxic wastes: a brief review, Advances in Applied Ceramics 105 (2006) 21-31.

DOI: 10.1179/174367606x81687

Google Scholar

[4] R.D. Rawlings, J.P. Wu, A. R. Boccaccini, Glass-ceramics: their production from wastes-a review, J. Mat. Sci. 41 (20063) 733-761.

DOI: 10.1007/s10853-006-6554-3

Google Scholar

[5] W. Hőland, G. Beall, Glass-Ceramics Technology, The American Ceramics Society, Westerville, (2002).

Google Scholar

[6] R.K. Chinnam,.A.A., Francis, J. Will, E. Bernardo, A.R. Boccaccini, Review: functional glasses and glass-ceramics derived from iron rich waste and combination of industrial residues, J. Non-Crystalline Solids 365 (2013) 63-74.

DOI: 10.1016/j.jnoncrysol.2012.12.006

Google Scholar

[7] Information on http: /www. neg. co. jp/arch.

Google Scholar

[8] A. Karamanov, I. Gutzow, I. Chomakov, Synthesis of wall-covering glass-ceramics from waste raw material, Glastech. Ber., Glass Sci. Tech. 67 (1994) 227-231.

Google Scholar

[9] A. Karamanov, Granite-like materials from hazardous wastes obtained by sinter-crystallization of glass frits, Advances in Applied Ceramics 108(2009) 14-21.

DOI: 10.1179/174367608x364302

Google Scholar

[10] A. Karamanov, G. Taglieri, M. Pelino, Iron-rich sintered glass-ceramics from industrial wastes, J. Am. Ceram. Soc. 82 (1999) 3012-3016.

DOI: 10.1111/j.1151-2916.1999.tb02195.x

Google Scholar

[11] A. Karamanov, M. Pelino, Crystallization phenomena in iron rich glasses, J. Non-Crystalline Solids 281 (2001) 139-151.

DOI: 10.1016/s0022-3093(00)00436-1

Google Scholar

[12] A. Karamanov, G. Taglieri, M. Pelino M., Sintering behavior and properties of iron-rich glass-ceramics, J. Am. Cer. Soc. 87 (2004) 1571-1574.

DOI: 10.1111/j.1551-2916.2004.01571.x

Google Scholar

[13] A. Karamanov, G. Taglieri, M. Pelino, Sintering in nitrogen atmosphere of iron-rich glass-ceramics, J. Am. Cer. Soc. 87 (2004) 1354-1357.

DOI: 10.1111/j.1151-2916.2004.tb07734.x

Google Scholar

[14] A. Karamanov, M. Aloisi, M. Pelino, Vitrification of copper flotation waste, J. Hazardous Mat. 140 (2007) 333-339.

DOI: 10.1016/j.jhazmat.2006.09.040

Google Scholar

[15] L. Maccarini Schabbach, F. Andreola, E. Karamanova, I. Lancellotti, A. Karamanov, L. Barbieri, Integrated approach to establish the sinter-crystallisation ability of glasses from secondary raw material, J. Non-Crystalline Solids 357 (2011) 10–17.

DOI: 10.1016/j.jnoncrysol.2010.10.006

Google Scholar

[16] A. Karamanov, L. Maccarini Schabbach, E. Karamanova, F. Andreola, L. Barbieri, B. Ranguelov, G. Avdeev, I. Lancellotti, Sinter-crystallization in air and inert atmospheres of a glass from pre-treated municipal solid waste bottom ashes, J. Non-Crystalline Solids 389 (2014).

DOI: 10.1016/j.jnoncrysol.2014.02.009

Google Scholar

[17] A. Karamanov, R. Di Gioacchino, P. Pisciella P. Pelino M., S. Hreglich, Viscosity of iron-rich glasses from industrial wastes, Glass Technology 43 (2002) 34-38.

Google Scholar

[18] A. Karamanov, I. Gutzow, I. Penkov, Diopside marble-like glass-ceramics, Glastech. Ber., Glass Sci. Tech. 67 (1994) 202-208.

Google Scholar

[19] D.J.M. Burkhard, T. Scherer, Surface oxidation of basalt glass/liquid, J. Non-Crystalline Solids 352 (2006) 241–247.

DOI: 10.1016/j.jnoncrysol.2005.11.029

Google Scholar