Detecting Aging Phenomena in Commercial Cathodes for Li-Ion Batteries Using High Resolution Computed Tomography

Article Preview

Abstract:

Using high resolution computed tomography (CT) the change of the morphometric parameters in depth of electrodes for lithium ion batteries with aging has been examined. Commercially available 2 Ah Li-ion cells were continuously cycled to different state of health (SOH). The cathodes were subsequently analyzed using CT with voxel size resolution of about 400 nm. For a quantitative analysis binarized images were evaluated and various properties such as the size distribution of active particles analyzed. Using this technique a decrease in the average particle size and an increase in number of particles of LiCoO2 with decreasing SOH of the battery is confirmed experimentally for the first time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

158-163

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. M. Tarascon, Phil. Trans. R. Soc. A 368, (2010), 3227–3241.

Google Scholar

[2] J. M. Tarascon, M. Armand, Nature 414, (2001), 359–367.

Google Scholar

[3] B. Scrosati, J. Garche, J. Power. Sources, 195 (2010) 2419–2430.

Google Scholar

[4] B. Lestriez, C. R. Chimie 13 (2010) 1341–1350.

Google Scholar

[5] S.K. Martha, E. Markevich, V. Burgel, G. Salitra, E. Zinigrad, B. Markovsky, H. Sclar, Z. Pramovich, O. Heik, D. Aurbach, I. Exnar, H. Buqa, T. Drezen, G. Semrau, M. Schmidt, D. Kovachevad, N. Saliyski, J. Power Sources 189 (2009) 288–296.

DOI: 10.1016/j.jpowsour.2008.09.084

Google Scholar

[6] J. Wang, J. Yang, Y. Tang, R. Li, G. Liang, T. -K. Sham, X. Sun, J. Mater. Chem. A, 1 (2013) 1579–1586.

Google Scholar

[7] T. Hutzenlaub, S. Thiele, R. Zengerle, Ch. Ziegler, Electrochem. Solid St. 15 (3) (2012) A33–A36.

Google Scholar

[8] P. Cocco, G. J. Nelson, W. M. Harris, A. Nakajo, T. D. Myles, A. M. Kiss, J. J. Lombardo, W.K. S. Chiu, Phys. Chem. Chem. Phys., 15 (2013) 16377–16407.

DOI: 10.1039/c3cp52356j

Google Scholar

[9] P. R. Shearing, L. E. Howard, P. S. Jørgensen, N. P. Brandon, S. J. Harris, Electrochem. Commun. 12 (2010) 374–377.

Google Scholar

[10] F. Tariq, V. Yufit , M. Kishimoto, P. R. Shearing, S. Menkin, D. Golodnitsky, J. Gelb, E. Peled, N. P. Brandon, J. Power Sources 248 (2014) 1014-1020.

DOI: 10.1016/j.jpowsour.2013.08.147

Google Scholar

[11] M. Ebner, F. Geldmacher, F. Marone, M. Stampanoni, V. Wood, Adv. Energy Mater. (2013) 1–6.

Google Scholar

[12] M. Wohlfahrt-Mehrens, C. Vogler, J. Garche, J. Power Sources 127 (2004) 58–64.

DOI: 10.1016/j.jpowsour.2003.09.034

Google Scholar

[13] J. Vetter, M. Winter, M. Wohlfahrt-Mehrens, Encyclopedia of Electrochemical Power Sources (2009) 393–403.

DOI: 10.1016/b978-044452745-5.00922-9

Google Scholar

[14] J. Vetter, P. Novák, M. R. Wagner, C. Veit, K. -C. Möller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, J. Power Sources 147 (2005) 269–281.

DOI: 10.1016/j.jpowsour.2005.01.006

Google Scholar

[15] E. Remy, E. Thiel, Pattern Recogn. Lett. 23 (2002) 649–661.

Google Scholar

[16] C. C. Ammatucci, J. M. Tarascon, L. C. Klein, J. Electrochem. Soc. 143(3) (1996) 1114–1123.

Google Scholar

[17] H. Wang, Y. -I. Jang, B. Huang, D. R. Sadoway, Y. -M. Chiang J. Electrochem. Soc. 146 (1999) 473–480.

Google Scholar

[18] A. Mukhopadhyay, B. W. Sheldon, Prog. Mater. Sci. 63 (2014) 58–116.

Google Scholar