Development of Plasmonic Photocatalysts for Environmental Application

Article Preview

Abstract:

Regarding catalytic and plasmonic properties of gold nanoparticles (NPs), the novel area of research on photocatalytic gold properties has been recently started. In contrast with catalytically active gold NPs, where nanosized gold is recommended, our results showed that polydispersity of deposited gold NPs on semiconducting support was beneficial for photocatalytic activity under visible light irradiation. It is thought that wide size/shape distribution of gold NPs, and thus the ability of absorption of light in a wide wavelengths range is responsible for the high level of photoactivity. Though desirable absorption properties of plasmonic photocatalysts can be easily obtained by preparation of nanoparticles of different sizes and shapes, their photocatalytic activities under visible light irradiation are still low and should be enanced. The improvement of photocatalytic activities under visible light irradiation was achieved by enlargement of interfacial contact between titania and NPs of noble metals, extension of photoabsorption ranges (by preparation of NPs of various sizes and shapes or composed of two kinds of noble metals), and by deposition of noble metals NPs on faceted titania, i.e., octahedral (OAPs) and decahedral (DAPs). Plasmonic photocatalysts composed of titania and NPs of silver, gold or copper showed also high antiseptic properties under visible light irradiation, due to possible synergism of antiseptic properties of noble metals and photodisinfection properties of photocatalyst, since reactive oxygen species or photogenerated holes are formed on the surface of irradiated semiconductor.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] R.E. Smalley, Nanotechnology, Energy and People, in MIT Forum, River Oaks, USA, (2003).

Google Scholar

[2] M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.

DOI: 10.1021/cr00033a004

Google Scholar

[3] B. Kraeutler, A.J. Bard, Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on TiO2 powder and other substrates, J. Am. Chem. Soc. 100 (1978) 4317-4318.

DOI: 10.1021/ja00481a059

Google Scholar

[4] B. Ohtani, M. Kakimoto, S. Nishimoto, T. Kagiya, Photocatalytic reaction of neat alcohols by metal-loaded titanium(IV) oxide particles, J. Phys. Chem. A: Chem. 70 (1993) 265-72.

DOI: 10.1016/1010-6030(93)85052-a

Google Scholar

[5] N. Chandrasekharan, P.V. Kamat, Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles, J. Phys. Chem. B 104 (2000) 10851-10857.

DOI: 10.1021/jp0010029

Google Scholar

[6] Y. Tian, T. Tatsuma, Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles, J. Am. Chem. Soc. 127 (2005) 7632-7637.

DOI: 10.1021/ja042192u

Google Scholar

[7] E. Kowalska, R. Abe, B. Ohtani, Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis, Chem. Commun. (2009) 241-243.

DOI: 10.1039/b815679d

Google Scholar

[8] C.G. Silva, R. Juarez, T. Marino, R. Molinari, H. Garcia, Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water, J. Am. Chem. Soc. 133 (2011).

DOI: 10.1021/ja1086358

Google Scholar

[9] P.A. DeSario, J.J. Pietron, D.E. DeVantier, T.H. Brintlinger, R.M. Stroud, D.R. Rolison, Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels, Nanoscale 5 (2013) 8073-8083.

DOI: 10.1039/c3nr01429k

Google Scholar

[10] H. Kominami, A. Tanaka, K. Hashimoto, Mineralization of organic acids in aqueous suspension of gold nanoparticles supported on cerium(IV) oxide powder under visible light irradiation, Chem. Commun. 46 (2010) 1287-1289.

DOI: 10.1039/b919598j

Google Scholar

[11] M. Haruta, Size- and support-dependency in the catalysis of gold, Catal. Today. 36 (1997) 153-166.

DOI: 10.1016/s0920-5861(96)00208-8

Google Scholar

[12] E. Kowalska, O.O.P. Mahaney, R. Abe, B. Ohtani, Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces, Phys. Chem. Chem. Phys. 12 (2010) 2344-2355.

DOI: 10.1039/b917399d

Google Scholar

[13] A. Zielinska, E. Kowalska, J.W. Sobczak, I. Lacka, M. Gazda, B. Ohtani, J. Hupka, A. Zaleska, Silver-doped TiO2 prepared by microemulsion method: Surface properties, bio- and photoactivity, Sep. Purif. Technol. 72 (2010) 309-318.

DOI: 10.1016/j.seppur.2010.03.002

Google Scholar

[14] D. Mitoraj, A. Janczyk, M. Strus, H. Kisch, G. Stochel, P.B. Heczko, W. Macyk, Visible light inactivation of bacteria and fungi by modified titanium dioxide, Photochem. Photobiol. Sci. 6 (2007) 642-648.

DOI: 10.1039/b617043a

Google Scholar

[15] A. Markowska-Szczupak, K. Ulfig, W.A. Morawski, The application of titanium dioxide for deactivation of bioparticulates: An overview, Catal. Today 161 (2011) 249-257.

DOI: 10.1016/j.cattod.2010.11.055

Google Scholar

[16] Z.S. Wei, E. Kowalska, B. Ohtani, Enhanced photocatalytic activity by particle morphology: Preparation, characterization, and photocatalytic activities of octahedral anatase titania particles, Chem. Lett. 43 (2014) 346-348.

DOI: 10.1246/cl.130985

Google Scholar

[17] O.O. Prieto-Mahaney, N. Murakami, R. Abe, B. Ohtani, Correlation between photocatalytic activities and structural and physical properties of titanium(IV) oxide powders, Chem. Lett. 38 (2009) 238-239.

DOI: 10.1246/cl.2009.238

Google Scholar

[18] E. Kowalska, M. Janczarek, L. Rosa, S. Juodkazi, B. Ohtani, Mono- and bi-metallic plasmonic photocatalysts for degradation of organic compounds under UV and visible light irradiation, Catal. Today 230 (2014) 131-137.

DOI: 10.1016/j.cattod.2013.11.021

Google Scholar

[19] E. Kowalska, S. Rau, B. Ohtani, Plasmonic titania photocatalysts active under UV and visible-light irradiation: Influence of gold amount, size, and shape, Journal of Nanotechnology 2012 (2012) 1-11.

DOI: 10.1155/2012/361853

Google Scholar

[20] A. Zielińska-Jurek, E. Kowalska, J.W. Sobczak, W. Lisowski, B. Ohtani, A. Zaleska, Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light, Appl. Catal. B: Environ. 101 (2011).

DOI: 10.1016/j.apcatb.2010.10.022

Google Scholar

[21] B. Karabiyik, Plasmonic materials with enhanced photocatalytic and antimicrobial properties, MSc thesis, Ulm University, (2014).

Google Scholar

[22] V. Subramanian, E. Wolf, P.V. Kamat, Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films?, J. Phys. Chem. B 105 (2001) 11439-11446.

DOI: 10.1021/jp011118k

Google Scholar

[23] L. Du, A. Furube, K. Hara, R. Katoh, M. Tachiya, Plasmon induced electron transfer at gold-TiO2 interface under femtosecond near-IR two photon excitation, Thin Solid Films 158 (2009) 861-864.

DOI: 10.1016/j.tsf.2009.07.104

Google Scholar

[24] D.B. Ingram, S. Linic, Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface, J. Am. Chem. Soc. 133 (2011) 5202-5205.

DOI: 10.1021/ja200086g

Google Scholar

[25] E. Kowalska, L. Rosa, S. Rau, S. Juodkazis, B. Ohtani, Preparation of titania/Au/titania nanoparticles with improved photoactivity and stability for visible-light application, (in preparation).

Google Scholar

[26] T. Ohno, K. Sarukawa, M. Matsumura, Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions, New. J. Chem. 26 (2002) 1167-1170.

DOI: 10.1039/b202140d

Google Scholar

[27] F. Amano, T. Yasumoto, O.O.P. Mahaney, S. Uchida, T. Shibayama, Y. Terada, B. Ohtani, Highly active titania photocatalyst particles of controlled crystal phase, size, and polyhedral shapes, Top. Catal. 53 (2010) 455-461.

DOI: 10.1007/s11244-010-9472-1

Google Scholar

[28] L. Zhang, H.F. Ji, Y.K. Lei, W. Xiao, Oxygen adsorption on anatase surfaces and edges, Appl. Surf. Sci. 257 (2011) 8402-8408.

DOI: 10.1016/j.apsusc.2011.04.091

Google Scholar

[29] W.A. Jacoby, P.C. Maness, E.J. Wolfrum, D.M. Blake, J.A. Fennell, Mineralization of bacterial cell mass on a photocatalytic surface in air, Environ. Sci. Technol. 32 (1998) 2650-2653.

DOI: 10.1021/es980036f

Google Scholar