[1]
R.E. Smalley, Nanotechnology, Energy and People, in MIT Forum, River Oaks, USA, (2003).
Google Scholar
[2]
M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.
DOI: 10.1021/cr00033a004
Google Scholar
[3]
B. Kraeutler, A.J. Bard, Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on TiO2 powder and other substrates, J. Am. Chem. Soc. 100 (1978) 4317-4318.
DOI: 10.1021/ja00481a059
Google Scholar
[4]
B. Ohtani, M. Kakimoto, S. Nishimoto, T. Kagiya, Photocatalytic reaction of neat alcohols by metal-loaded titanium(IV) oxide particles, J. Phys. Chem. A: Chem. 70 (1993) 265-72.
DOI: 10.1016/1010-6030(93)85052-a
Google Scholar
[5]
N. Chandrasekharan, P.V. Kamat, Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles, J. Phys. Chem. B 104 (2000) 10851-10857.
DOI: 10.1021/jp0010029
Google Scholar
[6]
Y. Tian, T. Tatsuma, Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles, J. Am. Chem. Soc. 127 (2005) 7632-7637.
DOI: 10.1021/ja042192u
Google Scholar
[7]
E. Kowalska, R. Abe, B. Ohtani, Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis, Chem. Commun. (2009) 241-243.
DOI: 10.1039/b815679d
Google Scholar
[8]
C.G. Silva, R. Juarez, T. Marino, R. Molinari, H. Garcia, Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water, J. Am. Chem. Soc. 133 (2011).
DOI: 10.1021/ja1086358
Google Scholar
[9]
P.A. DeSario, J.J. Pietron, D.E. DeVantier, T.H. Brintlinger, R.M. Stroud, D.R. Rolison, Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels, Nanoscale 5 (2013) 8073-8083.
DOI: 10.1039/c3nr01429k
Google Scholar
[10]
H. Kominami, A. Tanaka, K. Hashimoto, Mineralization of organic acids in aqueous suspension of gold nanoparticles supported on cerium(IV) oxide powder under visible light irradiation, Chem. Commun. 46 (2010) 1287-1289.
DOI: 10.1039/b919598j
Google Scholar
[11]
M. Haruta, Size- and support-dependency in the catalysis of gold, Catal. Today. 36 (1997) 153-166.
DOI: 10.1016/s0920-5861(96)00208-8
Google Scholar
[12]
E. Kowalska, O.O.P. Mahaney, R. Abe, B. Ohtani, Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces, Phys. Chem. Chem. Phys. 12 (2010) 2344-2355.
DOI: 10.1039/b917399d
Google Scholar
[13]
A. Zielinska, E. Kowalska, J.W. Sobczak, I. Lacka, M. Gazda, B. Ohtani, J. Hupka, A. Zaleska, Silver-doped TiO2 prepared by microemulsion method: Surface properties, bio- and photoactivity, Sep. Purif. Technol. 72 (2010) 309-318.
DOI: 10.1016/j.seppur.2010.03.002
Google Scholar
[14]
D. Mitoraj, A. Janczyk, M. Strus, H. Kisch, G. Stochel, P.B. Heczko, W. Macyk, Visible light inactivation of bacteria and fungi by modified titanium dioxide, Photochem. Photobiol. Sci. 6 (2007) 642-648.
DOI: 10.1039/b617043a
Google Scholar
[15]
A. Markowska-Szczupak, K. Ulfig, W.A. Morawski, The application of titanium dioxide for deactivation of bioparticulates: An overview, Catal. Today 161 (2011) 249-257.
DOI: 10.1016/j.cattod.2010.11.055
Google Scholar
[16]
Z.S. Wei, E. Kowalska, B. Ohtani, Enhanced photocatalytic activity by particle morphology: Preparation, characterization, and photocatalytic activities of octahedral anatase titania particles, Chem. Lett. 43 (2014) 346-348.
DOI: 10.1246/cl.130985
Google Scholar
[17]
O.O. Prieto-Mahaney, N. Murakami, R. Abe, B. Ohtani, Correlation between photocatalytic activities and structural and physical properties of titanium(IV) oxide powders, Chem. Lett. 38 (2009) 238-239.
DOI: 10.1246/cl.2009.238
Google Scholar
[18]
E. Kowalska, M. Janczarek, L. Rosa, S. Juodkazi, B. Ohtani, Mono- and bi-metallic plasmonic photocatalysts for degradation of organic compounds under UV and visible light irradiation, Catal. Today 230 (2014) 131-137.
DOI: 10.1016/j.cattod.2013.11.021
Google Scholar
[19]
E. Kowalska, S. Rau, B. Ohtani, Plasmonic titania photocatalysts active under UV and visible-light irradiation: Influence of gold amount, size, and shape, Journal of Nanotechnology 2012 (2012) 1-11.
DOI: 10.1155/2012/361853
Google Scholar
[20]
A. Zielińska-Jurek, E. Kowalska, J.W. Sobczak, W. Lisowski, B. Ohtani, A. Zaleska, Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light, Appl. Catal. B: Environ. 101 (2011).
DOI: 10.1016/j.apcatb.2010.10.022
Google Scholar
[21]
B. Karabiyik, Plasmonic materials with enhanced photocatalytic and antimicrobial properties, MSc thesis, Ulm University, (2014).
Google Scholar
[22]
V. Subramanian, E. Wolf, P.V. Kamat, Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films?, J. Phys. Chem. B 105 (2001) 11439-11446.
DOI: 10.1021/jp011118k
Google Scholar
[23]
L. Du, A. Furube, K. Hara, R. Katoh, M. Tachiya, Plasmon induced electron transfer at gold-TiO2 interface under femtosecond near-IR two photon excitation, Thin Solid Films 158 (2009) 861-864.
DOI: 10.1016/j.tsf.2009.07.104
Google Scholar
[24]
D.B. Ingram, S. Linic, Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface, J. Am. Chem. Soc. 133 (2011) 5202-5205.
DOI: 10.1021/ja200086g
Google Scholar
[25]
E. Kowalska, L. Rosa, S. Rau, S. Juodkazis, B. Ohtani, Preparation of titania/Au/titania nanoparticles with improved photoactivity and stability for visible-light application, (in preparation).
Google Scholar
[26]
T. Ohno, K. Sarukawa, M. Matsumura, Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions, New. J. Chem. 26 (2002) 1167-1170.
DOI: 10.1039/b202140d
Google Scholar
[27]
F. Amano, T. Yasumoto, O.O.P. Mahaney, S. Uchida, T. Shibayama, Y. Terada, B. Ohtani, Highly active titania photocatalyst particles of controlled crystal phase, size, and polyhedral shapes, Top. Catal. 53 (2010) 455-461.
DOI: 10.1007/s11244-010-9472-1
Google Scholar
[28]
L. Zhang, H.F. Ji, Y.K. Lei, W. Xiao, Oxygen adsorption on anatase surfaces and edges, Appl. Surf. Sci. 257 (2011) 8402-8408.
DOI: 10.1016/j.apsusc.2011.04.091
Google Scholar
[29]
W.A. Jacoby, P.C. Maness, E.J. Wolfrum, D.M. Blake, J.A. Fennell, Mineralization of bacterial cell mass on a photocatalytic surface in air, Environ. Sci. Technol. 32 (1998) 2650-2653.
DOI: 10.1021/es980036f
Google Scholar