Targeted Use of SPS Method for Improvement of Thermoelectrics

Article Preview

Abstract:

Use of spark plasma sintering (SPS) allows improving thermoelectric figure of merit Z of bulk nanothermoelectrics but required parameters of SPS process for achievement of best Z can be defined only empirically. In the present study the finite elements method for investigation of electric and thermal processes which occur in volume and on boundaries of sintering particles is applied. As a geometrical model a structural cell of a sintered sample, containing contact “a truncated cone - a plate” has been chosen. Temperature distributions in the volume of a sample depending on amplitude, on-off time ratio and duration of impact of the electric current has been obtained for solid solution based on bismuth telluride using the energy balance equation and the equation of electric current continuity. Under certain conditions nonlinear and nonlocal processes start to arise. The calculated temperature distributions at different sintering conditions were comparing with empirically defined experimental parameters that lead to improved value of Z. The comparison allows formulating recommendations to achieve best conditions of SPS process for increase of Z. The present method can be used for management of SPS fabrication process for different application, not only for thermoelectrics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

168-173

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] 1 A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch, London, (1957).

Google Scholar

[2] 2 A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, G. Chen. Energy Environ. Sci. 2, 466 (2009).

Google Scholar

[3] 3 Poudel B., Hao Q., Ma Y., Lan Y., Minnich A., Yu B., Yan X., Wang D., Muto A., Vashaee D., Chen X., Liu J., Dresselhaus M.S., Chen G., Ren Zh. Science 320, 634(2008).

DOI: 10.1126/science.1156446

Google Scholar

[4] 4 Xie W., Tang X., Yan Y., Zhang Q., Tritt T.M. Appl. Phys. Lett. 94, 102111(2009).

Google Scholar

[5] 5 Bulat L.P., Osvensky V.B., Pivovarov G.I., Snarskii A.A., Tatyanin E.V., Tay A.A.O. Proc. 6th European Conference on Thermoelectrics, July 2-4, 2008. – Paris (France). – P. I2-1 – I2-6.

Google Scholar

[6] 6 L.P. Bulat, D.A. Pshenai-Severin, V.V. Karatayev, V.B. Osvenskii, Yu.N. Parkhomenko, M. Lavrentev, A. Sorokin, V.D. Blank, G.I. Pivovarov, V.T. Bublik and N. Yu. Tabachkova. Bulk nanocrystalline thermoelectrics based on Bi-Sb-Te solid solution, in: A. A. Hashim (ed. ), The Delivery of Nanoparticles, InTech, 2012, pp.453-486.

DOI: 10.5772/34829

Google Scholar

[7] 7 R. Orru, R. Licheri, A. M. Locci, A. Cincotti, G. Cao. Materials Science and Engineering R 63, 127 (2009).

Google Scholar

[8] 8 M. Suarez, A. Fernandez, J.L. Menendez, R. Torrecillas, H. U. Kessel, J. Hennicke, R. Kirchner,  T. Kessel. Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials, in: B. Ertug (ed. ), Sintering Applications, InTech, 2013, pp.319-342.

DOI: 10.5772/53706

Google Scholar

[9] 9 E.A. Olevsky, L. Froyen. J. Am. Ceram. Soc., 92 [S1], S122 (2009).

Google Scholar

[10] 10 T. B. Holland, T. B. Tran, D. V. Quach, U. Anselmi-Tamburini, J. R. Groza, A. K. Mukherjee. Journal of the European Ceramic Society 32, 3675 (2012).

DOI: 10.1016/j.jeurceramsoc.2012.05.027

Google Scholar

[11] 11 X. Song, X. Liu, J. Zhang. J. Am. Ceram. Soc. 89, 494 (2006).

Google Scholar

[12] 12 T. B. Holland, U. Anselmi-Tamburini, D. V. Quach, T. B. Tran, A. K. Mukherjee. Journal of the European Ceramic Society 32, 3667 (2012).

DOI: 10.1016/j.jeurceramsoc.2012.02.033

Google Scholar

[13] 13 Anselmi-Tamburinia U., Gennarib S., Garaya J.E., Munir Z.A. Materials Science and Engineering A 394, 139 (2005).

Google Scholar

[14] 14 Cengel Y.A., Ghajar A.J. Heat and Mass Transfer, 4th ed., Tata McGraw-Hill Education Pvt. Ltd, (2011).

Google Scholar

[15] 15 Information on http: /www. contika. dk/Download/litteratur/emission. pdf.

Google Scholar

[16] 16 Information on http: /www. engineeringtoolbox. com/overall-heat-transfer-coefficients-d_284. html.

Google Scholar

[17] 17 Hust J. G. NBS Special Publication 260-89, 1984 (http: /www. nist. gov/srm/upload/SP260-89. PDF).

Google Scholar

[18] 18 Hust J.G., Giarratano P.J. NBS Special Publication 260-46, 1975 (http: /www. nist. gov/srm/upload/SP260-46. PDF).

Google Scholar

[19] 19 F. Cverna (ed. ), ASM Ready Reference: Thermal properties of metals, ASM International, 2002, 560p.

Google Scholar

[20] 20 Ya.B. Magemedov, G.G. Gadzhiev, Z.M. Omarov. Phase transitions, ordered states and new materials, № 9, 1(2013) (in Russian).

Google Scholar

[21] 21 Goltsman B.M., Kudinov B.A., Smirnov I.A. Semiconductor Thermoelectric Materials Based on Bi2Te3. Moskow, Nauka, 1972, 320 p.

Google Scholar

[22] 22 Stecker, K., Süssmann, H., Eichler, W., Heiliger, W., Stordeur, M. Wiss. Z. Martin-Luther-Univ., Halle/Wittenberg, math-naturwiss. R27, № 5, 5 (1978).

Google Scholar

[23] 23 Bergman Th. L., Lavine A.S., Incropera F.P., Dewitt D.P. Fundamentals of heat and mass transfer. 7th ed., John Wilesy & Sonss, 2011, 1050p.

Google Scholar