Power Management for Vibrational Energy Harvesters

Article Preview

Abstract:

As known, wireless sensing applications can be enabled by using ultra-low-power electronics for sensing, processing and transmitting information, in order to extend the battery lifetime. Battery size is also a limiting factor constrained by the application requirements. In this scenario, energy harvesting is a fascinating solution, which can attenuate the trade-off between battery size, power consumption of the load circuits and battery lifetime. In some particular applications, characterized by long times in which no energy is available in any form, the battery could completely deplete because of the standby current of the load circuits. For that reason, battery-less applications become more and more relevant. In this paper the available circuit techniques for interfacing vibrational energy harvesters are presented and compared.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-116

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Elfrink, T. M. Kamel, M. Goedbloed, S. Matova, D. Hohlfeld, Y. Van Andel, R. Van Schaijk, Vibration energy harvesting with aluminum nitride-based piezoelectric devices, Journal of Micromechanics and Microengineering (2011), p.095004.

DOI: 10.1088/0960-1317/19/9/094005

Google Scholar

[2] R. Elfrink, M. Renaud, T. Kamel, C. De Nooijer, M. Jambunathan, et al, Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system, Journal of Micromechanics and Microengineering Vol. 20 No. 10 (2010).

DOI: 10.1088/0960-1317/20/10/104001

Google Scholar

[3] H. A. C. Tilmans, Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems, Journal of Micromechanics and Microengineering Vol. 6 (1996), pp.157-176.

DOI: 10.1088/0960-1317/6/1/036

Google Scholar

[4] M. Renaud, P. Fiorini, C. Van Hoof, Optimization of a piezoelectric unimorph for shock and impact energy harvesting, Smart Material and Strucures Vol. 16 (2007), pp.1125-1135.

DOI: 10.1088/0964-1726/16/4/022

Google Scholar

[5] M. Renaud, R. Elfrink, M. Jambunathan, C. de Nooijer, Z. Wang, M. Rovers, R. Vullers, R. van Schaijk, Optimum power and efficiency of piezoelectric vibration energy harvesters with sinusoidal and random vibrations, Journal of Micromechanics and Microengineering Vol. 22 No. 10 (2012).

DOI: 10.1088/0960-1317/22/10/105030

Google Scholar

[6] M. Renaud, Piezoelectric energy harvesters for wireless sensor networks, PhD thesis Katholieke Universiteit Leuven.

Google Scholar

[7] Y. C. Shu, I. C. Lien, Efficiency of energy conversion for a piezoelectric power harvesting system, Journal of Micromechanics and Microengineering Vol. 16 (2006), pp.2429-2438.

DOI: 10.1088/0960-1317/16/11/026

Google Scholar

[8] E. Lefeuvre, A. Badel, C. Richard, L. Petit, D. Guyomar, A comparison between several vibration-powered piezoelectric generators for standalone systems, Sensors and Actuators Vol. 126 No. 2 (2006), pp.405-416.

DOI: 10.1016/j.sna.2005.10.043

Google Scholar

[9] Y. K. Ramadass, A. P. Chandrakasan, An efficient piezoelectric energy-harvesting interface circuit using a bias-flip rectifier and shared inductor, IEEE ISSCC (2009), pp.296-297.

DOI: 10.1109/isscc.2009.4977425

Google Scholar

[10] Y. K. Ramadass, A. P. Chandrakasan, An efficient piezoelectric energy-harvesting interface circuit using a bias-flip rectifier and shared inductor, IEEE JSSC Vol. 45 (2009), pp.189-204.

DOI: 10.1109/isscc.2009.4977425

Google Scholar

[11] E. Dallago, D. Miatton, G. Venchi, V. Bottarel, G. Frattini, G. Ricotti, M. Schipani, Active self supplied AC-DC converter for piezoelectric energy scavenging systems with supply independent bias, IEEE ISCAS (2008), pp.1448-1451.

DOI: 10.1109/iscas.2008.4541701

Google Scholar

[12] C. van Liempd, S. Stanzione, Y. Allasasmeh, C. Van Hoof, A 1µW-to-1mW energy-aware interface IC for piezoelectric harvesting with 40nA quiescent current and zero-bias active rectifiers, IEEE ISSCC (2013), pp.76-77.

DOI: 10.1109/isscc.2013.6487644

Google Scholar

[13] M. Shim, J. Kim, J. Jung, C. Kim, Self-powered 30µW-to-10mW piezoelectric energy-harvesting system with 9. 09ms/V Maximum Power Point Tracking time, IEEE ISSCC (2014), pp.406-407.

DOI: 10.1109/isscc.2014.6757490

Google Scholar

[14] E. O Torres, G. A. Rincón-Mora, A 0. 7-µm BiCMOS Electrostatic energy-harvesting system IC, IEEE JSSC Vol. 45 No. 2 (2010), pp.483-496.

DOI: 10.1109/jssc.2009.2038431

Google Scholar

[15] E. O. Torres, G. A. Rincón-Mora, Electrostatic energy-harvesting and battery-charging CMOS system prototype, IEEE Transactions on Circuits and Systems Vol. 56 No. 9 (2009), p.1938-(1948).

DOI: 10.1109/tcsi.2008.2011578

Google Scholar

[16] S. Stanzione, C. van Liempd, C. Van Hoof, Electronics Letters Vol. 49 No. 3 (2013), pp.210-211.

Google Scholar

[17] S. Stanzione, C. van Liempd, R. van Schaijk, R. Y. Naito, R. F. Yazicioglu, C. Van Hoof, A self-biased 5-to-60V input voltage and 25-to-1600µW integrated DC-DC buck converter with fully analog MPPT algorithm reaching up to 88% end-to-end efficiency, IEEE ISSCC(2013).

DOI: 10.1109/isscc.2013.6487643

Google Scholar

[18] S. Stanzione, C. van Liempd, R. van Schaijk, R. Y Naito, R. F. Yazicioglu, C. Van Hoof, A high voltage self-biased integrated DC-DC buck converter with fully analog MPPT algorithm for electrostatic energy harvesters, IEEE JSSC Vol. 48 No. 12 (2013).

DOI: 10.1109/jssc.2013.2283152

Google Scholar

[19] R. Elfrink, V. van Acht, S. Stanzione, P. Bembnowicz, M. Tutelaers, R. van Schaijk, Fully autonomous tire pressure monitoring systems (TPMS) powered by a vibrational electrostatic energy harvester, Smart System Integration (2014), pp.69-76.

Google Scholar