On-Body Chemo/Bio-Sensing - Opportunities and Challenges

Article Preview

Abstract:

In recent years, there has been significant progress in a number of sensing technologies related to on-body measurements, such as platforms for monitoring respiration, heart rate, location and movement. In these cases, the sensing element (s) are based on highly effective transducers that are increasingly integrated into garments such that they are becoming innocuous to the user. In contrast, the area of on-body chemical sensing remains highly under-developed. In this paper, we will address the significant challenges that are inhibiting the practical realisation of reliable chemical sensors and biosensors capable of generating accurate data in real time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

78-88

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Latré, B. Braem, I. Moerman, C. Blondia, P. Demeester, A survey on wireless body area networks, Wireless Networks. 17 (2011) 1-18.

DOI: 10.1007/s11276-010-0252-4

Google Scholar

[2] D. Diamond, S. Coyle, S. Scarmagnani, J. Hayes, Wireless sensor networks and chemo-/biosensing, Chem. Rev. 108 (2008) 652-679.

DOI: 10.1021/cr0681187

Google Scholar

[3] C. Zuliani, D. Diamond, Opportunities and challenges of using ion-selective electrodes in environmental monitoring and wearable sensors, Electrochim. Acta. 84 (2012) 29-34.

DOI: 10.1016/j.electacta.2012.04.147

Google Scholar

[4] M. Chan, D. Estève, J. Fourniols, C. Escriba, E. Campo, Smart wearable systems: Current status and future challenges, Artif. Intell. Med. 56 (2012) 137-156.

DOI: 10.1016/j.artmed.2012.09.003

Google Scholar

[5] D. Diamond, Peer Reviewed: Internet-Scale Sensing, Anal. Chem. 76 (2004) 278 A-286 A.

DOI: 10.1021/ac041598m

Google Scholar

[6] K.T. SATO, A. RICHARDSON, D.E. TIMM, K. SATO, One-step iodine starch method for direct visualization of sweating, Am. J. Med. Sci. 295 (1988) 528-531.

DOI: 10.1097/00000441-198806000-00006

Google Scholar

[7] P. Lemon, K. Yarasheski, Feasibility of sweat collection by whole body washdown in moderate to high humidity environments, Int. J. Sports Med. 6 (1985) 41-43.

DOI: 10.1055/s-2008-1025811

Google Scholar

[8] S.M. Shirreffs, R.J. Maughan, Whole body sweat collection in humans: an improved method with preliminary data on electrolyte content, J. Appl. Physiol. (1985). 82 (1997) 336-341.

DOI: 10.1152/jappl.1997.82.1.336

Google Scholar

[9] X. Cai, J. Yan, H. Chu, M. Wu, Y. Tu, An exercise degree monitoring biosensor based on electrochemiluminescent detection of lactate in sweat, Sensors Actuators B: Chem. 143 (2010) 655-659.

DOI: 10.1016/j.snb.2009.10.002

Google Scholar

[10] A. Caduff, M.S. Talary, M. Mueller, F. Dewarrat, J. Klisic, M. Donath, L. Heinemann, W.A. Stahel, Non-invasive glucose monitoring in patients with Type 1 diabetes: a multisensor system combining sensors for dielectric and optical characterisation of skin, Biosensors and Bioelectronics. 24 (2009).

DOI: 10.1016/j.bios.2009.02.001

Google Scholar

[11] M. Gamella, S. Campuzano, J. Manso, G. Rivera, F. López-Colino, A. Reviejo, J. Pingarrón, A novel non-invasive electrochemical biosensing device for in situ determination of the alcohol content in blood by monitoring ethanol in sweat, Anal. Chim. Acta. 806 (2014).

DOI: 10.1016/j.aca.2013.09.020

Google Scholar

[12] D. Morris, S. Coyle, Y. Wu, K.T. Lau, G. Wallace, D. Diamond, Bio-sensing textile based patch with integrated optical detection system for sweat monitoring, Sensors Actuators B: Chem. 139 (2009) 231-236.

DOI: 10.1016/j.snb.2009.02.032

Google Scholar

[13] S. Coyle, K. Lau, N. Moyna, D. O'Gorman, D. Diamond, F. Di Francesco, D. Costanzo, P. Salvo, M.G. Trivella, D.E. De Rossi, BIOTEX—Biosensing textiles for personalised healthcare management, Information Technology in Biomedicine, IEEE Transactions on. 14 (2010).

DOI: 10.1109/titb.2009.2038484

Google Scholar

[14] V.F. Curto, S. Coyle, R. Byrne, N. Angelov, D. Diamond, F. Benito-Lopez, Concept and development of an autonomous wearable micro-fluidic platform for real time pH sweat analysis, Sensors Actuators B: Chem. 175 (2012) 263-270.

DOI: 10.1016/j.snb.2012.02.010

Google Scholar

[15] V.F. Curto, C. Fay, S. Coyle, R. Byrne, C. O'Toole, C. Barry, S. Hughes, N. Moyna, D. Diamond, F. Benito-Lopez, Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids, Sensors Actuators B: Chem. 171 (2012).

DOI: 10.1016/j.snb.2012.06.048

Google Scholar

[16] N. Hamouti, J. Del Coso, R. Mora-Rodriguez, Comparison between blood and urinary fluid balance indices during dehydrating exercise and the subsequent hypohydration when fluid is not restored, Eur. J. Appl. Physiol. 113 (2013) 611-620.

DOI: 10.1007/s00421-012-2467-9

Google Scholar

[17] M.H. Schmid-Wendtner, H.C. Korting, The pH of the skin surface and its impact on the barrier function, Skin Pharmacol. Physiol. 19 (2006) 296-302.

DOI: 10.1159/000094670

Google Scholar

[18] M.J. Patterson, S.D. Galloway, M.A. Nimmo, Variations in regional sweat composition in normal human males, Exp. Physiol. 85 (2000) 869-875.

DOI: 10.1017/s0958067000020583

Google Scholar

[19] J.J. Hulstein, P. van 't Sant, Sweat analysis using indirect ion-selective electrode on the routine chemistry analyser meets UK guidelines, Ann. Clin. Biochem. 48 (2011) 374-376.

DOI: 10.1258/acb.2011.011001

Google Scholar

[20] P.B. Davis, U. Yasothan, P. Kirkpatrick, Ivacaftor, Nature Reviews Drug Discovery. 11 (2012) 349-350.

DOI: 10.1038/nrd3723

Google Scholar

[21] B. Schazmann, D. Morris, C. Slater, S. Beirne, C. Fay, R. Reuveny, N. Moyna, D. Diamond, A wearable electrochemical sensor for the real-time measurement of sweat sodium concentration, Analytical Methods. 2 (2010) 342-348.

DOI: 10.1039/b9ay00184k

Google Scholar

[22] C. Zuliani, G. Matzeu, D. Diamond, A liquid-junction-free reference electrode based on a PEDOT solid-contact and ionogel capping membrane, Talanta. 125 (2014) 58-64.

DOI: 10.1016/j.talanta.2014.02.018

Google Scholar

[23] B. O'Flynn, S. Bellis, K. Delaney, J. Barton, S.C. O'Mathuna, A.M. Barroso, J. Benson, U. Roedig, C. Sreenan, The development of a novel minaturized modular platform for wireless sensor networks, Information Processing in Sensor Networks, 2005.  IPSN 2005.  Fourth International Symposium on. (2005).

DOI: 10.1109/ipsn.2005.1440951

Google Scholar

[24] T. Guinovart, M. Parrilla, G.A. Crespo, F.X. Rius, F.J. Andrade, Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes, Analyst. 138 (2013) 5208-5215.

DOI: 10.1039/c3an00710c

Google Scholar

[25] D.H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, J.A. Rogers, Epidermal electronics, Science. 333 (2011).

DOI: 10.1126/science.1206157

Google Scholar

[26] J.R. Windmiller, J. Wang, Wearable electrochemical sensors and biosensors: a review, Electroanalysis. 25 (2013) 29-46.

DOI: 10.1002/elan.201200349

Google Scholar

[27] T. Guinovart, A.J. Bandodkar, J.R. Windmiller, F.J. Andrade, J. Wang, A potentiometric tattoo sensor for monitoring ammonium in sweat, Analyst. 138 (2013) 7031-7038.

DOI: 10.1039/c3an01672b

Google Scholar

[28] A.J. Bandodkar, V.W. Hung, W. Jia, G. Valdés-Ramírez, J.R. Windmiller, A.G. Martinez, J. Ramírez, G. Chan, K. Kerman, J. Wang, Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring, Analyst. 138 (2013) 123-128.

DOI: 10.1039/c2an36422k

Google Scholar

[29] A.J. Bandodkar, D. Molinnus, O. Mirza, T. Guinovart, J.R. Windmiller, G. Valdés-Ramírez, F.J. Andrade, M.J. Schöning, J. Wang, Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring, Biosensors and Bioelectronics. 54 (2014).

DOI: 10.1016/j.bios.2013.11.039

Google Scholar

[30] W. Jia, A.J. Bandodkar, G. Valdes-Ramirez, J.R. Windmiller, Z. Yang, J. Ramirez, G. Chan, J. Wang, Electrochemical Tattoo Biosensors for Real-Time Noninvasive Lactate Monitoring in Human Perspiration, Anal. Chem. 85 (2013) 6553-6560.

DOI: 10.1021/ac401573r

Google Scholar

[31] J.S. Mitchell, T.E. Lowe, J.R. Ingram, Rapid ultrasensitive measurement of salivary cortisol using nano-linker chemistry coupled with surface plasmon resonance detection, Analyst. 134 (2009) 380-386.

DOI: 10.1039/b817083p

Google Scholar

[32] J.S. Mitchell, T.E. Lowe, Ultrasensitive detection of testosterone using conjugate linker technology in a nanoparticle-enhanced surface plasmon resonance biosensor, Biosensors and Bioelectronics. 24 (2009) 2177-2183.

DOI: 10.1016/j.bios.2008.11.018

Google Scholar

[33] G. Saikia, P.K. Iyer, A remarkable superquenching and superdequenching sensor for the selective and noninvasive detection of inorganic phosphates in saliva, Macromolecules. 44 (2011) 3753-3758.

DOI: 10.1021/ma1026675

Google Scholar

[34] M. Yamaguchi, M. Deguchi, J. Wakasugi, Flat-chip microanalytical enzyme sensor for salivary amylase activity, Biomed. Microdevices. 7 (2005) 295-300.

DOI: 10.1007/s10544-005-6071-1

Google Scholar

[35] A.O. Aluoch, O.A. Sadik, G. Bedi, Development of an oral biosensor for salivary amylase using a monodispersed silver for signal amplification, Anal. Biochem. 340 (2005) 136-144.

DOI: 10.1016/j.ab.2005.02.003

Google Scholar

[36] R.C. Kwan, H. Leung, P.Y. Hon, H.C. Cheung, K. Hirota, R. Renneberg, Amperometric biosensor for determining human salivary phosphate, Anal. Biochem. 343 (2005) 263-267.

DOI: 10.1016/j.ab.2005.05.021

Google Scholar

[37] D. Du, J. Wang, J.N. Smith, C. Timchalk, Y. Lin, Biomonitoring of organophosphorus agent exposure by reactivation of cholinesterase enzyme based on carbon nanotube-enhanced flow-injection amperometric detection, Anal. Chem. 81 (2009) 9314-9320.

DOI: 10.1021/ac901673a

Google Scholar

[38] C. Schabmueller, D. Loppow, G. Piechotta, B. Schütze, J. Albers, R. Hintsche, Micromachined sensor for lactate monitoring in saliva, Biosensors and Bioelectronics. 21 (2006) 1770-1776.

DOI: 10.1016/j.bios.2005.09.015

Google Scholar

[39] A. Spehar‐Délèze, S. Anastasova, P. Vadgama, Electropolymerised Phenolic Films as Internal Barriers for Oxidase Enzyme Biosensors, Electroanalysis. (2013).

DOI: 10.1002/elan.201300371

Google Scholar

[40] M.B. Lerner, N. Kybert, R. Mendoza, R. Villechenon, M.A.B. Lopez, A.C. Johnson, Scalable, non-invasive glucose sensor based on boronic acid functionalized carbon nanotube transistors, Appl. Phys. Lett. 102 (2013) 183113.

DOI: 10.1063/1.4804438

Google Scholar

[41] J.H. Kim, P. McAuliffe, B. O'Connel, D. Diamond, K.T. Lau, Development of bite guard for wireless monitoring of bruxism using pressure-sensitive polymer, (2010) 109-116.

DOI: 10.1109/bsn.2010.62

Google Scholar

[42] S. Ghimenti, T. Lomonaco, M. Onor, L. Murgia, A. Paolicchi, R. Fuoco, L. Ruocco, G. Pellegrini, M.G. Trivella, F. Di Francesco, Measurement of warfarin in the oral fluid of patients undergoing anticoagulant oral therapy, PloS one. 6 (2011).

DOI: 10.1371/journal.pone.0028182

Google Scholar

[43] A. Millward, L. Shaw, E. Harrington, A. Smith, Continuous monitoring of salivary flow rate and pH at the surface of the dentition following consumption of acidic beverages, Caries Res. 31 (1997) 44-49.

DOI: 10.1159/000262373

Google Scholar

[44] V.W. Yang, M. Wehbi, A. Peer, C. This, D.H. Dentists, Understanding Acid Reflux and Its Dental Manifestations, esophagus (Figure 4). 4 (2007) 5.

Google Scholar

[45] C. Zuliani, G. Matzeu, D. Diamond, A potentiometric disposable sensor strip for measuring pH in saliva, Electrochim. Acta.

DOI: 10.1016/j.electacta.2014.03.140

Google Scholar

[46] J. Wang, J. Kim, P. Mercier, A. Badodkar, J. Ramirez, A.G. Martinez, W. Jia, G.V. Ramirez, Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites, Analyst. (2014).

DOI: 10.1039/c3an02359a

Google Scholar

[47] M.S. Mannoor, H. Tao, J.D. Clayton, A. Sengupta, D.L. Kaplan, R.R. Naik, N. Verma, F.G. Omenetto, M.C. McAlpine, Graphene-based wireless bacteria detection on tooth enamel, Nature communications. 3 (2012) 763.

DOI: 10.1038/ncomms1767

Google Scholar