[1]
B. Latré, B. Braem, I. Moerman, C. Blondia, P. Demeester, A survey on wireless body area networks, Wireless Networks. 17 (2011) 1-18.
DOI: 10.1007/s11276-010-0252-4
Google Scholar
[2]
D. Diamond, S. Coyle, S. Scarmagnani, J. Hayes, Wireless sensor networks and chemo-/biosensing, Chem. Rev. 108 (2008) 652-679.
DOI: 10.1021/cr0681187
Google Scholar
[3]
C. Zuliani, D. Diamond, Opportunities and challenges of using ion-selective electrodes in environmental monitoring and wearable sensors, Electrochim. Acta. 84 (2012) 29-34.
DOI: 10.1016/j.electacta.2012.04.147
Google Scholar
[4]
M. Chan, D. Estève, J. Fourniols, C. Escriba, E. Campo, Smart wearable systems: Current status and future challenges, Artif. Intell. Med. 56 (2012) 137-156.
DOI: 10.1016/j.artmed.2012.09.003
Google Scholar
[5]
D. Diamond, Peer Reviewed: Internet-Scale Sensing, Anal. Chem. 76 (2004) 278 A-286 A.
DOI: 10.1021/ac041598m
Google Scholar
[6]
K.T. SATO, A. RICHARDSON, D.E. TIMM, K. SATO, One-step iodine starch method for direct visualization of sweating, Am. J. Med. Sci. 295 (1988) 528-531.
DOI: 10.1097/00000441-198806000-00006
Google Scholar
[7]
P. Lemon, K. Yarasheski, Feasibility of sweat collection by whole body washdown in moderate to high humidity environments, Int. J. Sports Med. 6 (1985) 41-43.
DOI: 10.1055/s-2008-1025811
Google Scholar
[8]
S.M. Shirreffs, R.J. Maughan, Whole body sweat collection in humans: an improved method with preliminary data on electrolyte content, J. Appl. Physiol. (1985). 82 (1997) 336-341.
DOI: 10.1152/jappl.1997.82.1.336
Google Scholar
[9]
X. Cai, J. Yan, H. Chu, M. Wu, Y. Tu, An exercise degree monitoring biosensor based on electrochemiluminescent detection of lactate in sweat, Sensors Actuators B: Chem. 143 (2010) 655-659.
DOI: 10.1016/j.snb.2009.10.002
Google Scholar
[10]
A. Caduff, M.S. Talary, M. Mueller, F. Dewarrat, J. Klisic, M. Donath, L. Heinemann, W.A. Stahel, Non-invasive glucose monitoring in patients with Type 1 diabetes: a multisensor system combining sensors for dielectric and optical characterisation of skin, Biosensors and Bioelectronics. 24 (2009).
DOI: 10.1016/j.bios.2009.02.001
Google Scholar
[11]
M. Gamella, S. Campuzano, J. Manso, G. Rivera, F. López-Colino, A. Reviejo, J. Pingarrón, A novel non-invasive electrochemical biosensing device for in situ determination of the alcohol content in blood by monitoring ethanol in sweat, Anal. Chim. Acta. 806 (2014).
DOI: 10.1016/j.aca.2013.09.020
Google Scholar
[12]
D. Morris, S. Coyle, Y. Wu, K.T. Lau, G. Wallace, D. Diamond, Bio-sensing textile based patch with integrated optical detection system for sweat monitoring, Sensors Actuators B: Chem. 139 (2009) 231-236.
DOI: 10.1016/j.snb.2009.02.032
Google Scholar
[13]
S. Coyle, K. Lau, N. Moyna, D. O'Gorman, D. Diamond, F. Di Francesco, D. Costanzo, P. Salvo, M.G. Trivella, D.E. De Rossi, BIOTEX—Biosensing textiles for personalised healthcare management, Information Technology in Biomedicine, IEEE Transactions on. 14 (2010).
DOI: 10.1109/titb.2009.2038484
Google Scholar
[14]
V.F. Curto, S. Coyle, R. Byrne, N. Angelov, D. Diamond, F. Benito-Lopez, Concept and development of an autonomous wearable micro-fluidic platform for real time pH sweat analysis, Sensors Actuators B: Chem. 175 (2012) 263-270.
DOI: 10.1016/j.snb.2012.02.010
Google Scholar
[15]
V.F. Curto, C. Fay, S. Coyle, R. Byrne, C. O'Toole, C. Barry, S. Hughes, N. Moyna, D. Diamond, F. Benito-Lopez, Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids, Sensors Actuators B: Chem. 171 (2012).
DOI: 10.1016/j.snb.2012.06.048
Google Scholar
[16]
N. Hamouti, J. Del Coso, R. Mora-Rodriguez, Comparison between blood and urinary fluid balance indices during dehydrating exercise and the subsequent hypohydration when fluid is not restored, Eur. J. Appl. Physiol. 113 (2013) 611-620.
DOI: 10.1007/s00421-012-2467-9
Google Scholar
[17]
M.H. Schmid-Wendtner, H.C. Korting, The pH of the skin surface and its impact on the barrier function, Skin Pharmacol. Physiol. 19 (2006) 296-302.
DOI: 10.1159/000094670
Google Scholar
[18]
M.J. Patterson, S.D. Galloway, M.A. Nimmo, Variations in regional sweat composition in normal human males, Exp. Physiol. 85 (2000) 869-875.
DOI: 10.1017/s0958067000020583
Google Scholar
[19]
J.J. Hulstein, P. van 't Sant, Sweat analysis using indirect ion-selective electrode on the routine chemistry analyser meets UK guidelines, Ann. Clin. Biochem. 48 (2011) 374-376.
DOI: 10.1258/acb.2011.011001
Google Scholar
[20]
P.B. Davis, U. Yasothan, P. Kirkpatrick, Ivacaftor, Nature Reviews Drug Discovery. 11 (2012) 349-350.
DOI: 10.1038/nrd3723
Google Scholar
[21]
B. Schazmann, D. Morris, C. Slater, S. Beirne, C. Fay, R. Reuveny, N. Moyna, D. Diamond, A wearable electrochemical sensor for the real-time measurement of sweat sodium concentration, Analytical Methods. 2 (2010) 342-348.
DOI: 10.1039/b9ay00184k
Google Scholar
[22]
C. Zuliani, G. Matzeu, D. Diamond, A liquid-junction-free reference electrode based on a PEDOT solid-contact and ionogel capping membrane, Talanta. 125 (2014) 58-64.
DOI: 10.1016/j.talanta.2014.02.018
Google Scholar
[23]
B. O'Flynn, S. Bellis, K. Delaney, J. Barton, S.C. O'Mathuna, A.M. Barroso, J. Benson, U. Roedig, C. Sreenan, The development of a novel minaturized modular platform for wireless sensor networks, Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth International Symposium on. (2005).
DOI: 10.1109/ipsn.2005.1440951
Google Scholar
[24]
T. Guinovart, M. Parrilla, G.A. Crespo, F.X. Rius, F.J. Andrade, Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes, Analyst. 138 (2013) 5208-5215.
DOI: 10.1039/c3an00710c
Google Scholar
[25]
D.H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, J.A. Rogers, Epidermal electronics, Science. 333 (2011).
DOI: 10.1126/science.1206157
Google Scholar
[26]
J.R. Windmiller, J. Wang, Wearable electrochemical sensors and biosensors: a review, Electroanalysis. 25 (2013) 29-46.
DOI: 10.1002/elan.201200349
Google Scholar
[27]
T. Guinovart, A.J. Bandodkar, J.R. Windmiller, F.J. Andrade, J. Wang, A potentiometric tattoo sensor for monitoring ammonium in sweat, Analyst. 138 (2013) 7031-7038.
DOI: 10.1039/c3an01672b
Google Scholar
[28]
A.J. Bandodkar, V.W. Hung, W. Jia, G. Valdés-Ramírez, J.R. Windmiller, A.G. Martinez, J. Ramírez, G. Chan, K. Kerman, J. Wang, Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring, Analyst. 138 (2013) 123-128.
DOI: 10.1039/c2an36422k
Google Scholar
[29]
A.J. Bandodkar, D. Molinnus, O. Mirza, T. Guinovart, J.R. Windmiller, G. Valdés-Ramírez, F.J. Andrade, M.J. Schöning, J. Wang, Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring, Biosensors and Bioelectronics. 54 (2014).
DOI: 10.1016/j.bios.2013.11.039
Google Scholar
[30]
W. Jia, A.J. Bandodkar, G. Valdes-Ramirez, J.R. Windmiller, Z. Yang, J. Ramirez, G. Chan, J. Wang, Electrochemical Tattoo Biosensors for Real-Time Noninvasive Lactate Monitoring in Human Perspiration, Anal. Chem. 85 (2013) 6553-6560.
DOI: 10.1021/ac401573r
Google Scholar
[31]
J.S. Mitchell, T.E. Lowe, J.R. Ingram, Rapid ultrasensitive measurement of salivary cortisol using nano-linker chemistry coupled with surface plasmon resonance detection, Analyst. 134 (2009) 380-386.
DOI: 10.1039/b817083p
Google Scholar
[32]
J.S. Mitchell, T.E. Lowe, Ultrasensitive detection of testosterone using conjugate linker technology in a nanoparticle-enhanced surface plasmon resonance biosensor, Biosensors and Bioelectronics. 24 (2009) 2177-2183.
DOI: 10.1016/j.bios.2008.11.018
Google Scholar
[33]
G. Saikia, P.K. Iyer, A remarkable superquenching and superdequenching sensor for the selective and noninvasive detection of inorganic phosphates in saliva, Macromolecules. 44 (2011) 3753-3758.
DOI: 10.1021/ma1026675
Google Scholar
[34]
M. Yamaguchi, M. Deguchi, J. Wakasugi, Flat-chip microanalytical enzyme sensor for salivary amylase activity, Biomed. Microdevices. 7 (2005) 295-300.
DOI: 10.1007/s10544-005-6071-1
Google Scholar
[35]
A.O. Aluoch, O.A. Sadik, G. Bedi, Development of an oral biosensor for salivary amylase using a monodispersed silver for signal amplification, Anal. Biochem. 340 (2005) 136-144.
DOI: 10.1016/j.ab.2005.02.003
Google Scholar
[36]
R.C. Kwan, H. Leung, P.Y. Hon, H.C. Cheung, K. Hirota, R. Renneberg, Amperometric biosensor for determining human salivary phosphate, Anal. Biochem. 343 (2005) 263-267.
DOI: 10.1016/j.ab.2005.05.021
Google Scholar
[37]
D. Du, J. Wang, J.N. Smith, C. Timchalk, Y. Lin, Biomonitoring of organophosphorus agent exposure by reactivation of cholinesterase enzyme based on carbon nanotube-enhanced flow-injection amperometric detection, Anal. Chem. 81 (2009) 9314-9320.
DOI: 10.1021/ac901673a
Google Scholar
[38]
C. Schabmueller, D. Loppow, G. Piechotta, B. Schütze, J. Albers, R. Hintsche, Micromachined sensor for lactate monitoring in saliva, Biosensors and Bioelectronics. 21 (2006) 1770-1776.
DOI: 10.1016/j.bios.2005.09.015
Google Scholar
[39]
A. Spehar‐Délèze, S. Anastasova, P. Vadgama, Electropolymerised Phenolic Films as Internal Barriers for Oxidase Enzyme Biosensors, Electroanalysis. (2013).
DOI: 10.1002/elan.201300371
Google Scholar
[40]
M.B. Lerner, N. Kybert, R. Mendoza, R. Villechenon, M.A.B. Lopez, A.C. Johnson, Scalable, non-invasive glucose sensor based on boronic acid functionalized carbon nanotube transistors, Appl. Phys. Lett. 102 (2013) 183113.
DOI: 10.1063/1.4804438
Google Scholar
[41]
J.H. Kim, P. McAuliffe, B. O'Connel, D. Diamond, K.T. Lau, Development of bite guard for wireless monitoring of bruxism using pressure-sensitive polymer, (2010) 109-116.
DOI: 10.1109/bsn.2010.62
Google Scholar
[42]
S. Ghimenti, T. Lomonaco, M. Onor, L. Murgia, A. Paolicchi, R. Fuoco, L. Ruocco, G. Pellegrini, M.G. Trivella, F. Di Francesco, Measurement of warfarin in the oral fluid of patients undergoing anticoagulant oral therapy, PloS one. 6 (2011).
DOI: 10.1371/journal.pone.0028182
Google Scholar
[43]
A. Millward, L. Shaw, E. Harrington, A. Smith, Continuous monitoring of salivary flow rate and pH at the surface of the dentition following consumption of acidic beverages, Caries Res. 31 (1997) 44-49.
DOI: 10.1159/000262373
Google Scholar
[44]
V.W. Yang, M. Wehbi, A. Peer, C. This, D.H. Dentists, Understanding Acid Reflux and Its Dental Manifestations, esophagus (Figure 4). 4 (2007) 5.
Google Scholar
[45]
C. Zuliani, G. Matzeu, D. Diamond, A potentiometric disposable sensor strip for measuring pH in saliva, Electrochim. Acta.
DOI: 10.1016/j.electacta.2014.03.140
Google Scholar
[46]
J. Wang, J. Kim, P. Mercier, A. Badodkar, J. Ramirez, A.G. Martinez, W. Jia, G.V. Ramirez, Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites, Analyst. (2014).
DOI: 10.1039/c3an02359a
Google Scholar
[47]
M.S. Mannoor, H. Tao, J.D. Clayton, A. Sengupta, D.L. Kaplan, R.R. Naik, N. Verma, F.G. Omenetto, M.C. McAlpine, Graphene-based wireless bacteria detection on tooth enamel, Nature communications. 3 (2012) 763.
DOI: 10.1038/ncomms1767
Google Scholar