[1]
Mason, S. G., Bashashati, A., Fatourechi, M., Navarro, K. F., and Birch, G. E., 2007, A comprehensive survey of brain interface technology designs, Ann Biomed Eng, 35(2), pp.137-169.
DOI: 10.1007/s10439-006-9170-0
Google Scholar
[2]
Gao, L., Wang, J., and Chen, L., 2013, Event-related desynchronization and synchronization quantification in motor-related EEG by Kolmogorov entropy, J Neural Eng, 10(3), p.036023.
DOI: 10.1088/1741-2560/10/3/036023
Google Scholar
[3]
Park, C., Looney, D., Naveed ur Rehman, Ahrabian, A., and Mandic, D. P., 2013, Classification of motor imagery BCI using multivariate empirical mode decomposition, IEEE Trans Neural Syst Rehabil Eng, 21(1), pp.10-22.
DOI: 10.1109/tnsre.2012.2229296
Google Scholar
[4]
Chung, Y. G., Kang, J. H., and Kim, S. P., 2012, Correlation of fronto-central phase coupling with sensorimotor rhythm modulation, Neural Netw, 36, pp.46-50.
DOI: 10.1016/j.neunet.2012.08.006
Google Scholar
[5]
Billinger, M., Brunner, C., and Müller-Putz, G. R., 2013, Single-trial connectivity estimation for classification of motor imagery data, J Neural Eng, 10(4), p.046006.
DOI: 10.1088/1741-2560/10/4/046006
Google Scholar
[6]
Asensio-Cubero, J., Gan, J. Q., and Palaniappan, R., 2013, Multiresolution analysis over simple graphs for brain computer interfaces, J Neural Eng, 10(4), p.046014.
DOI: 10.1088/1741-2560/10/4/046014
Google Scholar
[7]
Robinson, N., Vinod, A. P., Ang, K. K., Tee, K. P., and Guan, C. T., 2013, EEG-based classification of fast and slow hand movements using Wavelet-CSP algorithm, IEEE Trans Biomed Eng, 60(8), pp.2123-2132.
DOI: 10.1109/tbme.2013.2248153
Google Scholar
[8]
Hsu, W. Y., 2013, Embedded grey relation theory in Hopfield neural network: application to motor imagery EEG recognition, Clin EEG Neurosci, 44(4), pp.257-264.
DOI: 10.1177/1550059413477090
Google Scholar
[9]
Chen, X., Bin, G., Daly, I., and Gao, X., 2013, Event-related desynchronization (ERD) in the alpha band during a hand mental rotation task, Neurosci Lett, 541, pp.238-242.
DOI: 10.1016/j.neulet.2013.02.036
Google Scholar
[10]
Schneider, S., Rouffet, D. M., Billaut, F., and Strüder, H. K., 2013, Cortical current density oscillations in the motor cortex are correlated with muscular activity during pedaling exercise, Neuroscience, 228, pp.309-314.
DOI: 10.1016/j.neuroscience.2012.10.037
Google Scholar
[11]
Ushiyama, J., and Ushiba, J., 2013, Resonance between cortex and muscle: a determinant of motor precision?, Clin Neurophysiol, 124(1), pp.5-7.
DOI: 10.1016/j.clinph.2012.08.004
Google Scholar
[12]
Petersen, T. H., Willerslev-Olsen, M., Conway, B. A., and Nielsen, J. B., 2012, The motor cortex drives the muscles during walking in human subjects, J Physiol, 590(Pt 10), pp.2443-2452.
DOI: 10.1113/jphysiol.2012.227397
Google Scholar
[13]
Stock, A. K., Wascher, E., and Beste, C., 2013, Differential effects of motor efference copies and proprioceptive information on response evaluation processes, PLoS One, 8(4), p. e62335.
DOI: 10.1371/journal.pone.0062335
Google Scholar
[14]
Hermes, D., Siero, J. C., Aarnoutse, E. J., Leijten, F. S., Petridou, N., and Ramsey, N. F., 2012, Dissociation between neuronal activity in sensorimotor cortex and hand movement revealed as a function of movement rate, J Neurosci, 32(28), pp.9736-9744.
DOI: 10.1523/jneurosci.0357-12.2012
Google Scholar
[15]
Miller, K. J., Hermes, D., Honey, C. J., Hebb, A. O., Ramsey, N. F., Knight, R. T., Ojemann, J. G., and Fetz, E. E., 2012, Human motor cortical activity is selectively phase-entrained on underlying rhythms, PLoS Comput Biol, 8(9), p. e1002655.
DOI: 10.1371/journal.pcbi.1002655
Google Scholar
[16]
Di Pino, G., Porcaro, C., Tombini, M., Assenza, G., Pellegrino, G., Tecchio, F., and Rossini, P. M., 2012, A neurally-interfaced hand prosthesis tuned inter-hemispheric communication, Restor Neurol Neurosci, 30(5), pp.407-418.
DOI: 10.3233/rnn-2012-120224
Google Scholar
[17]
Llanos, C., Rodriguez, M., Rodriguez-Sabate, C., Morales, I., and Sabate, M., 2013, Mu-rhythm changes during the planning of motor and motor imagery actions, Neuropsychologia, 51(6), pp.1019-1026.
DOI: 10.1016/j.neuropsychologia.2013.02.008
Google Scholar
[18]
Liyanage, S. R., Guan, C., Zhang, H., Ang, K. K., Xu, J., and Lee, T. H., 2013, Dynamically weighted ensemble classification for non-stationary EEG processing, J Neural Eng, 10(3), p.036007.
DOI: 10.1088/1741-2560/10/3/036007
Google Scholar
[19]
Arvaneh, M., Guan, C., Ang, K. K., and Quek, C., 2012, Omitting the intra-session calibration in EEG-based brain computer interface used for stroke rehabilitation, Conf Proc IEEE Eng Med Biol Soc, 2012, pp.4124-4127.
DOI: 10.1109/embc.2012.6346874
Google Scholar
[20]
Shoureshi, R. A., and Aasted, C. M., 2012, Wearable Hybrid Sensor Array for Motor Cortex Monitoring, Advances in Science and Technology, 85, pp.23-27.
DOI: 10.4028/www.scientific.net/ast.85.23
Google Scholar
[21]
Vidaurre, C., and Blankertz, B., 2010, Towards a cure for BCI illiteracy, Brain Topogr, 23(2), pp.194-198.
DOI: 10.1007/s10548-009-0121-6
Google Scholar