Fluctuations in Frequency Composition of Neural Activity Observed by Portable Brain Intention Detection Device

Article Preview

Abstract:

As part of the goal of developing wearable sensor technologies, we have continued the development of a headset system for monitoring activity across the primary motor cortex of the brain. Through the combination of electroencephalography (EEG) and near-infrared spectroscopy (NIRS), the headsets are capable of monitoring event-related potentials and hemodynamic activity, which are wirelessly transmitted to a computer for real-time processing to generate control signals for a motorized prosthetic limb or a virtual embodiment of one or more limbs. This paper focuses on recent observations that have been made regarding the frequency content of EEG data, which we believe is responsible for the high performance we have previously reported using artificial neural networks to infer user’s intentions. While the inference engine takes advantage of frequency content from 0-128 Hertz (Hz), distinct fluctuations in alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-100 Hz) frequency bands are human-observable across varying upper limb motor exercises when observed at the group level. In addition to prosthetic limbs, this technology is continuing to be investigated for application in areas including pain treatment, robotic arm control, lie detection, and more general brain-computer interfaces.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-94

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Mason, S. G., Bashashati, A., Fatourechi, M., Navarro, K. F., and Birch, G. E., 2007, A comprehensive survey of brain interface technology designs, Ann Biomed Eng, 35(2), pp.137-169.

DOI: 10.1007/s10439-006-9170-0

Google Scholar

[2] Gao, L., Wang, J., and Chen, L., 2013, Event-related desynchronization and synchronization quantification in motor-related EEG by Kolmogorov entropy, J Neural Eng, 10(3), p.036023.

DOI: 10.1088/1741-2560/10/3/036023

Google Scholar

[3] Park, C., Looney, D., Naveed ur Rehman, Ahrabian, A., and Mandic, D. P., 2013, Classification of motor imagery BCI using multivariate empirical mode decomposition, IEEE Trans Neural Syst Rehabil Eng, 21(1), pp.10-22.

DOI: 10.1109/tnsre.2012.2229296

Google Scholar

[4] Chung, Y. G., Kang, J. H., and Kim, S. P., 2012, Correlation of fronto-central phase coupling with sensorimotor rhythm modulation, Neural Netw, 36, pp.46-50.

DOI: 10.1016/j.neunet.2012.08.006

Google Scholar

[5] Billinger, M., Brunner, C., and Müller-Putz, G. R., 2013, Single-trial connectivity estimation for classification of motor imagery data, J Neural Eng, 10(4), p.046006.

DOI: 10.1088/1741-2560/10/4/046006

Google Scholar

[6] Asensio-Cubero, J., Gan, J. Q., and Palaniappan, R., 2013, Multiresolution analysis over simple graphs for brain computer interfaces, J Neural Eng, 10(4), p.046014.

DOI: 10.1088/1741-2560/10/4/046014

Google Scholar

[7] Robinson, N., Vinod, A. P., Ang, K. K., Tee, K. P., and Guan, C. T., 2013, EEG-based classification of fast and slow hand movements using Wavelet-CSP algorithm, IEEE Trans Biomed Eng, 60(8), pp.2123-2132.

DOI: 10.1109/tbme.2013.2248153

Google Scholar

[8] Hsu, W. Y., 2013, Embedded grey relation theory in Hopfield neural network: application to motor imagery EEG recognition, Clin EEG Neurosci, 44(4), pp.257-264.

DOI: 10.1177/1550059413477090

Google Scholar

[9] Chen, X., Bin, G., Daly, I., and Gao, X., 2013, Event-related desynchronization (ERD) in the alpha band during a hand mental rotation task, Neurosci Lett, 541, pp.238-242.

DOI: 10.1016/j.neulet.2013.02.036

Google Scholar

[10] Schneider, S., Rouffet, D. M., Billaut, F., and Strüder, H. K., 2013, Cortical current density oscillations in the motor cortex are correlated with muscular activity during pedaling exercise, Neuroscience, 228, pp.309-314.

DOI: 10.1016/j.neuroscience.2012.10.037

Google Scholar

[11] Ushiyama, J., and Ushiba, J., 2013, Resonance between cortex and muscle: a determinant of motor precision?, Clin Neurophysiol, 124(1), pp.5-7.

DOI: 10.1016/j.clinph.2012.08.004

Google Scholar

[12] Petersen, T. H., Willerslev-Olsen, M., Conway, B. A., and Nielsen, J. B., 2012, The motor cortex drives the muscles during walking in human subjects, J Physiol, 590(Pt 10), pp.2443-2452.

DOI: 10.1113/jphysiol.2012.227397

Google Scholar

[13] Stock, A. K., Wascher, E., and Beste, C., 2013, Differential effects of motor efference copies and proprioceptive information on response evaluation processes, PLoS One, 8(4), p. e62335.

DOI: 10.1371/journal.pone.0062335

Google Scholar

[14] Hermes, D., Siero, J. C., Aarnoutse, E. J., Leijten, F. S., Petridou, N., and Ramsey, N. F., 2012, Dissociation between neuronal activity in sensorimotor cortex and hand movement revealed as a function of movement rate, J Neurosci, 32(28), pp.9736-9744.

DOI: 10.1523/jneurosci.0357-12.2012

Google Scholar

[15] Miller, K. J., Hermes, D., Honey, C. J., Hebb, A. O., Ramsey, N. F., Knight, R. T., Ojemann, J. G., and Fetz, E. E., 2012, Human motor cortical activity is selectively phase-entrained on underlying rhythms, PLoS Comput Biol, 8(9), p. e1002655.

DOI: 10.1371/journal.pcbi.1002655

Google Scholar

[16] Di Pino, G., Porcaro, C., Tombini, M., Assenza, G., Pellegrino, G., Tecchio, F., and Rossini, P. M., 2012, A neurally-interfaced hand prosthesis tuned inter-hemispheric communication, Restor Neurol Neurosci, 30(5), pp.407-418.

DOI: 10.3233/rnn-2012-120224

Google Scholar

[17] Llanos, C., Rodriguez, M., Rodriguez-Sabate, C., Morales, I., and Sabate, M., 2013, Mu-rhythm changes during the planning of motor and motor imagery actions, Neuropsychologia, 51(6), pp.1019-1026.

DOI: 10.1016/j.neuropsychologia.2013.02.008

Google Scholar

[18] Liyanage, S. R., Guan, C., Zhang, H., Ang, K. K., Xu, J., and Lee, T. H., 2013, Dynamically weighted ensemble classification for non-stationary EEG processing, J Neural Eng, 10(3), p.036007.

DOI: 10.1088/1741-2560/10/3/036007

Google Scholar

[19] Arvaneh, M., Guan, C., Ang, K. K., and Quek, C., 2012, Omitting the intra-session calibration in EEG-based brain computer interface used for stroke rehabilitation, Conf Proc IEEE Eng Med Biol Soc, 2012, pp.4124-4127.

DOI: 10.1109/embc.2012.6346874

Google Scholar

[20] Shoureshi, R. A., and Aasted, C. M., 2012, Wearable Hybrid Sensor Array for Motor Cortex Monitoring, Advances in Science and Technology, 85, pp.23-27.

DOI: 10.4028/www.scientific.net/ast.85.23

Google Scholar

[21] Vidaurre, C., and Blankertz, B., 2010, Towards a cure for BCI illiteracy, Brain Topogr, 23(2), pp.194-198.

DOI: 10.1007/s10548-009-0121-6

Google Scholar