Influence of Concentration of Pseudoboehmite Nanofiller on the Thermal and Mechanical Properties in Polystyrene Compounds

Article Preview

Abstract:

Polymeric nanocomposites are hybrid materials, where fillers with nanometric dimensions are dispersed in a polymeric matrix. The fillers have a high surface area, promoting better dispersion in the polymeric matrix and therefore an improvement in physical properties of the composite depending on the homogeneity of the material. In the present work, nanocomposites of polystyrene with different concentrations of pseudoboehmite obtained by a sol-gel process, and treated with octadecylamine were prepared. The nanocomposites were characterized by thermal and mechanical tests. The addition of pseudoboehmite caused a reduction of the melting flow during the production of the composites evidencing the interaction of pseudoboehmite with the polymeric matrix. The addition of pseudoboehmite promoted an increase in the melt flow index, in the the hardness of the nanocomposites obtained, practically does not affect the tensile strength and modulus and the impact strength decreases. The presence of pseudoboehmite causes increase in heat deflection temperature and Vicat softening point and the thermal decomposition occurred at a higher temperature than the pure PS.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-17

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.C.C. Esteves, A. Barros-Timmons, T. Trindade, Nanocompósitos de Matriz Polimérica: Estratégias de Síntese de Materiais Híbridos. Quimica Nova, Vol. 27, no. 5 (2014) 798-806.

DOI: 10.1590/s0100-40422004000500020

Google Scholar

[2] M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering, Vol. 28 (2000) 1-12.

DOI: 10.1016/s0927-796x(00)00012-7

Google Scholar

[3] M. P. Villanueva, L. Cabedo, E. Gimenez, J. M. Lagaron, P. D Coates, A. L. Kelly, Study of the dispersion of nanoclays in a LDPE matrix using microscopy and in- process ultrasonic monitoring. Polymer Testing, Vol. 28 (2009) 277.

DOI: 10.1016/j.polymertesting.2008.12.009

Google Scholar

[4] D. Sun, Y. Li, B. Zhang, X. Pan Preparation and characterization of novel nanocomposites based on polyacrylonitrile/kaolinite. Composites. Science and Technology, 70 (2010) 981.

DOI: 10.1016/j.compscitech.2010.02.016

Google Scholar

[5] A. D. Pomogailo, Synthesis and Intercalation Chemistry of Hybrid Organo-Inorganic Nanocomposites. Journal of Polymer Science , Part C: Polymer Letters, Vol. 48 (2006) 85.

DOI: 10.1134/s181123820601005x

Google Scholar

[6] A. S. Edelstein, R.C. Cammarata, Nanomaterials: synthesis, properties and applications. New York: Taylor & Francis Group., (1996).

Google Scholar

[7] R. W Novickis, Desenvolvimento de cerâmica fina do tipo pseudoboemita para síntese de nanosistemas para liberação de moléculas com propriedades farmacêuticas (2009).

Google Scholar

[8] R. W. Novickis, M. V. S. Martins, L. F. de Miranda, R. R. Ribeiro, L. Silva, A. H. Munhoz Jr., Development of nanosystems to release atenolol, Advances in Science and Technology, vol. 86 (2013) 102–107.

DOI: 10.4028/www.scientific.net/ast.86.102

Google Scholar

[9] P.M.M.C. Almeida, V.H.S. Magalhães, Polímeros. Universidade Fernando Pessoa - Faculdade de Ciências e Tecnologia. Porto , (2004).

Google Scholar

[10] W. D. Callister Jr., Ciência e Engenharia de Materiais: Uma Introdução. 5 ed. Rio de Janeiro: LTC, (2002).

Google Scholar

[11] T. Itagaki, A. Matsumura, M. Kato, A. Usuki, K. J. Kuroda, Preparation of kaolinite–nylon6 composites by blending nylon6 and a kaolinite–nylon6 intercalation compound Material. Science Letters, Vol. 20 (2001) 1483-1484.

DOI: 10.1023/a:1017918228163

Google Scholar

[12] L. Wang, X. Xie, S. Su, J. Feng, C. A. Wilkie A comparison of the fire retardancy of poly(methyl methacrylate) using montmorillonite, layered double hydroxide and kaolinite. Polymer Degradation and Stability, Vol. 95 (2010) 572-578.

DOI: 10.1016/j.polymdegradstab.2009.12.012

Google Scholar

[13] Y. Turhan, M. Dogan, M. Alkan, Poly(vinyl chloride)/Kaolinite Nanocomposites: Characterization and Thermal and Optical Properties. Industrial and Engineering Chemistry Research. Vol. 49 (2010) 1503.

DOI: 10.1021/ie901384x

Google Scholar

[14] P. Zapata, R. Quijada, J. Retuert, E. Moncada. Preparation of nanocomposites by in situ polimerization. Journal of Chilean Chemical Society. 55 (2010) 440-444.

DOI: 10.4067/s0717-97072008000100006

Google Scholar

[15] E.M. Moroz, K.I. Shefer, Zyuzin, A. Dmitry, A. S. Ivanova, E. V. Kulko, Goidin, V. V. Vasily, V. V. Molchanov, Local structure of pseudoboehmites, React. Kinet. Catal. Lett, Vol. 87, No. 2, 367-375, (2006).

DOI: 10.1007/s11144-006-0045-z

Google Scholar

[16] A.H. Munhoz Jr, H. de Paiva, L. F. Miranda, E.C. de Oliveira, R. Cons Andrades, Abner Cabral Neto, Synthesis and Characterization of Pseudoboehmite and Gamma-Alumina, Materials Science Forum, Vol. 820 (2015) pp.131-136.

DOI: 10.4028/www.scientific.net/msf.820.131

Google Scholar