Influence of Concentration of Pseudoboehmite Nanofiller on the Thermal and Mechanical Properties in Polystyrene Compounds

Abstract:

Article Preview

Polymeric nanocomposites are hybrid materials, where fillers with nanometric dimensions are dispersed in a polymeric matrix. The fillers have a high surface area, promoting better dispersion in the polymeric matrix and therefore an improvement in physical properties of the composite depending on the homogeneity of the material. In the present work, nanocomposites of polystyrene with different concentrations of pseudoboehmite obtained by a sol-gel process, and treated with octadecylamine were prepared. The nanocomposites were characterized by thermal and mechanical tests. The addition of pseudoboehmite caused a reduction of the melting flow during the production of the composites evidencing the interaction of pseudoboehmite with the polymeric matrix. The addition of pseudoboehmite promoted an increase in the melt flow index, in the the hardness of the nanocomposites obtained, practically does not affect the tensile strength and modulus and the impact strength decreases. The presence of pseudoboehmite causes increase in heat deflection temperature and Vicat softening point and the thermal decomposition occurred at a higher temperature than the pure PS.

Info:

Periodical:

Edited by:

Pietro Vincenzini

Pages:

11-17

Citation:

L. F. de Miranda et al., "Influence of Concentration of Pseudoboehmite Nanofiller on the Thermal and Mechanical Properties in Polystyrene Compounds", Advances in Science and Technology, Vol. 97, pp. 11-17, 2017

Online since:

October 2016

Export:

Price:

$41.00

* - Corresponding Author

[1] A.C.C. Esteves, A. Barros-Timmons, T. Trindade, Nanocompósitos de Matriz Polimérica: Estratégias de Síntese de Materiais Híbridos. Quimica Nova, Vol. 27, no. 5 (2014) 798-806.

DOI: https://doi.org/10.1590/s0100-40422004000500020

[2] M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering, Vol. 28 (2000) 1-12.

DOI: https://doi.org/10.1016/s0927-796x(00)00012-7

[3] M. P. Villanueva, L. Cabedo, E. Gimenez, J. M. Lagaron, P. D Coates, A. L. Kelly, Study of the dispersion of nanoclays in a LDPE matrix using microscopy and in- process ultrasonic monitoring. Polymer Testing, Vol. 28 (2009) 277.

DOI: https://doi.org/10.1016/j.polymertesting.2008.12.009

[4] D. Sun, Y. Li, B. Zhang, X. Pan Preparation and characterization of novel nanocomposites based on polyacrylonitrile/kaolinite. Composites. Science and Technology, 70 (2010) 981.

DOI: https://doi.org/10.1016/j.compscitech.2010.02.016

[5] A. D. Pomogailo, Synthesis and Intercalation Chemistry of Hybrid Organo-Inorganic Nanocomposites. Journal of Polymer Science , Part C: Polymer Letters, Vol. 48 (2006) 85.

DOI: https://doi.org/10.1134/s181123820601005x

[6] A. S. Edelstein, R.C. Cammarata, Nanomaterials: synthesis, properties and applications. New York: Taylor & Francis Group., (1996).

[7] R. W Novickis, Desenvolvimento de cerâmica fina do tipo pseudoboemita para síntese de nanosistemas para liberação de moléculas com propriedades farmacêuticas (2009).

[8] R. W. Novickis, M. V. S. Martins, L. F. de Miranda, R. R. Ribeiro, L. Silva, A. H. Munhoz Jr., Development of nanosystems to release atenolol, Advances in Science and Technology, vol. 86 (2013) 102–107.

DOI: https://doi.org/10.4028/www.scientific.net/ast.86.102

[9] P.M.M.C. Almeida, V.H.S. Magalhães, Polímeros. Universidade Fernando Pessoa - Faculdade de Ciências e Tecnologia. Porto , (2004).

[10] W. D. Callister Jr., Ciência e Engenharia de Materiais: Uma Introdução. 5 ed. Rio de Janeiro: LTC, (2002).

[11] T. Itagaki, A. Matsumura, M. Kato, A. Usuki, K. J. Kuroda, Preparation of kaolinite–nylon6 composites by blending nylon6 and a kaolinite–nylon6 intercalation compound Material. Science Letters, Vol. 20 (2001) 1483-1484.

DOI: https://doi.org/10.1023/a:1017918228163

[12] L. Wang, X. Xie, S. Su, J. Feng, C. A. Wilkie A comparison of the fire retardancy of poly(methyl methacrylate) using montmorillonite, layered double hydroxide and kaolinite. Polymer Degradation and Stability, Vol. 95 (2010) 572-578.

DOI: https://doi.org/10.1016/j.polymdegradstab.2009.12.012

[13] Y. Turhan, M. Dogan, M. Alkan, Poly(vinyl chloride)/Kaolinite Nanocomposites: Characterization and Thermal and Optical Properties. Industrial and Engineering Chemistry Research. Vol. 49 (2010) 1503.

DOI: https://doi.org/10.1021/ie901384x

[14] P. Zapata, R. Quijada, J. Retuert, E. Moncada. Preparation of nanocomposites by in situ polimerization. Journal of Chilean Chemical Society. 55 (2010) 440-444.

[15] E.M. Moroz, K.I. Shefer, Zyuzin, A. Dmitry, A. S. Ivanova, E. V. Kulko, Goidin, V. V. Vasily, V. V. Molchanov, Local structure of pseudoboehmites, React. Kinet. Catal. Lett, Vol. 87, No. 2, 367-375, (2006).

DOI: https://doi.org/10.1007/s11144-006-0045-z

[16] A.H. Munhoz Jr, H. de Paiva, L. F. Miranda, E.C. de Oliveira, R. Cons Andrades, Abner Cabral Neto, Synthesis and Characterization of Pseudoboehmite and Gamma-Alumina, Materials Science Forum, Vol. 820 (2015) pp.131-136.

DOI: https://doi.org/10.4028/www.scientific.net/msf.820.131