Mutual Conversion between Stretched and Contracted Helices and its External Stimuli Induced Drastic Colors and Geometrical Structures Changes of Substituted Polyacetylenes Prepared with an Organo-Rhodium Catalyst

Abstract:

Article Preview

Unique conversions between stretched and contracted helices of mono-substituted polyacetylenes (SPA)s prepared with an organo rhodium complex-amine catalytic system were demonstrated. The conversions of aromatic SPAs with a drastic color change were caused by polymerization solvents used, substituents in the phenyl ring, and external stimuli like heat- and solvent-treatments which were induced in the solid state. The helices of aliphatic polyacetylenes was oscillating just like spring or coil which was synchronizing with the restricted rotation around the ester O-*C bond in the solution. The oscillation mode was named as an accordion-like helix oscillation “HELIOS”. All the conversions were attributed to the difference of the thermodynamical stability between stretched and contracted helices.

Info:

Periodical:

Edited by:

Pietro Vincenzini

Pages:

18-23

Citation:

M. Tabata et al., "Mutual Conversion between Stretched and Contracted Helices and its External Stimuli Induced Drastic Colors and Geometrical Structures Changes of Substituted Polyacetylenes Prepared with an Organo-Rhodium Catalyst", Advances in Science and Technology, Vol. 97, pp. 18-23, 2017

Online since:

October 2016

Export:

Price:

$41.00

* - Corresponding Author

[1] M. Tabata, T. Sone, Y. Sadahiro, Y. Macromol. Chem. Phys. 200 (1999) 265-282.

[2] T.A. Skotheim, Handbook of Conducting Polymers. New York, Dekker, 1986. V. 1-2.

[3] M. Falconieri, R. D'Amato, M.V. Russo, A. Furlani, Nonlinear Opt. 27 (2001) 439-442.

[4] E. Yashima, K. Maeda, H. Iida, Y. Furusho, et. al., Chem. Rev. 109 (2009) 6102-6211.

[5] K. Shimomura, T. Ikai, S. Kanoh, E. Yashima, K. Maeda, Nat. Chem. 6 (2014) 429-434.

[6] M. Shiotsuki, F. Sanda, T. Masuda, Polym. Chem. 2 (2011) 1044-1058.

[7] Y. Li, M. Yang, J. Sensors Actuators B: Chem. 86 (2002) 155-159.

[8] M. Tabata, Y. Watanabe, S. Muto, Macromol. Chem. Phys. 205 (2004) 1174-1178.

[9] A. Motoshige, Y. Mawatari, Y. Yoshida, C. Seki, H. Matsuyama, M. Tabata, J. Polym. Sci. Part A: Polym. Chem. 50 (2012) 3008-3015.

DOI: https://doi.org/10.1002/pola.26089

[10] A. Motoshige, Y. Mawatari, R. Motoshige, Y. Yoshida, M. Tabata, J. Polym. Sci. Part A: Polym. Chem. 51 (2013) 5177-5183.

DOI: https://doi.org/10.1002/pola.26961

[11] R. Motoshige, Y. Mawatari, A. Motoshige, Y. Yoshida, T. Sasaki, H. Yoshimizu, T. Suzuki, Y. Tsujita, M. Tabata, J. Polym. Sci. Part A: Polym. Chem. 52 (2014) 752-759.

DOI: https://doi.org/10.1002/pola.27065

[12] A. Motoshige, Y. Mawatari, Y. Yoshida, R. Motoshige, M. Tabata, Polym. Chem. 5 (2014) 971-978.

DOI: https://doi.org/10.1039/c3py01000g

[13] Y. Mawatari, A. Motoshige, Y. Yoshida, R. Motoshige, T. Sasaki, M. Tabata, Polymer 55(2014) 2356-2361.

[14] Y. Mawatari, Y. Yoshida, A. Motoshige, R. Motoshige, T. Sasaki, M. Tabata, M. Eur. Polym. J. 57 (2014) 213-220.

[15] Y. Yoshida, Y. Mawatari, A. Motoshige, R. Motoshige, T. Hiraoki, M. Wagner, K. Müllen, M. Tabata, M. J. Am. Chem. Soc. 135 (2013) 4110-4116.

DOI: https://doi.org/10.1021/ja4004987

[16] Y. Yoshida, Y. Mawatari, A. Motoshige, R. Motoshige, T. Hiraoki, M. Tabata, M. Polym. Chem. 4 (2013) 2982-2988.

[17] I.L. Spain, The Physics of Semimetals and Narrow Band-Gap Semiconductors; Carter, D.L., Bate, R. T., Eds.; Pergamon Press: Oxford, (1971).

[18] R. Nomura, Y. Fukushima, H. Nakako, T. Masuda, J. Am. Chem. Soc. 122 (2000) 8830-8836.

[19] N. Wang, Y. Zhang, K. Yano, C. Durkan, N. Plank, M.E. Welland, H.E. Unalan, M. Mann, G.J.E. Amaratunga, W.I. Milne, Nanotechnology 20 (2009) 105201.

DOI: https://doi.org/10.1088/0957-4484/20/10/105201