[1]
ABDELLATEF, Y. & KAVGIC, M. 2020. Thermal, microstructural and numerical analysis of hempcrete-microencapsulated phase change material composites. Applied Thermal Engineering, 178.
DOI: 10.1016/j.applthermaleng.2020.115520
Google Scholar
[2]
ABDELLATEF, Y., KHAN, M. A., KHAN, A., ALAM, M. I. & KAVGIC, M. 2020. Mechanical, Thermal, and Moisture Buffering Properties of Novel Insulating Hemp-Lime Composite Building Materials. Materials (Basel), 13.
DOI: 10.3390/ma13215000
Google Scholar
[3]
ALKAN, C., SARı, A. & KARAIPEKLI, A. 2011. Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage. Energy Conversion and Management, 52, 687-692.
DOI: 10.1016/j.enconman.2010.07.047
Google Scholar
[4]
ARNAUD, L., BOYEUX, B. & HUSTACHE, Y. 2013. Hemp and the Construction Industry, Hemp: Industrial Production and Uses. CABI, 239-259.
DOI: 10.1079/9781845937935.0239
Google Scholar
[5]
C518–17, A. 2017. ASTM C518–17, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. ASTM International, West Conshohocken, PA.
DOI: 10.1520/c0518
Google Scholar
[6]
C1784-14, A. 2014. ASTM C1784-14, Standard Test Method for Using a Heat Flow Meter Apparatus for Measuring Thermal Storage Properties of Phase Change Materials and Products. ASTM International, West Conshohocken, PA.
DOI: 10.1520/c1784-14
Google Scholar
[7]
COLLET, F., CHAMOIN, J., PRETOT, S. & LANOS, C. 2013. Comparison of the hygric behaviour of three hemp concretes. Energy and Buildings, 62, 294-303.
DOI: 10.1016/j.enbuild.2013.03.010
Google Scholar
[8]
EVRARD, A. 2008. Transient hygrothermal behavior of Lime-Hemp Materials. PhD, Universite Catholique De Louvain.
Google Scholar
[9]
HALLIDAY, S. 2018. Sustainable Construction. 2nd Edition, London, UK: Butterworth Heinemann.
Google Scholar
[10]
HOES, P., TRCKA, M., HENSEN, J. L. M. & HOEKSTRA BONNEMA, B. 2011. Investigating the potential of a novel low-energy house concept with hybrid adaptable thermal storage. Energy Conversion and Management, 52, 2442-2447.
DOI: 10.1016/j.enconman.2010.12.050
Google Scholar
[11]
LATIF, E., LAWRENCE, M., SHEA, A. & WALKER, P. 2015. Moisture buffer potential of experimental wall assemblies incorporating formulated hemp-lime. Building and Environment, 93, 199-209.
DOI: 10.1016/j.buildenv.2015.07.011
Google Scholar
[12]
LAWRENCE, M., FODDE, E., PAINE, K. & WALKER, P. 2012. Hygrothermal Performance of an Experimental Hemp-Lime Building. Key Engineering Materials, 517, 413-421.
DOI: 10.4028/www.scientific.net/kem.517.413
Google Scholar
[13]
MCLAGGAN, M. S., HADDEN, R. M. & GILLIE, M. 2017. Flammability assessment of phase change material wall lining and insulation materials with different weight fractions. Energy and Buildings, 153, 439-447.
DOI: 10.1016/j.enbuild.2017.08.012
Google Scholar
[14]
NAVARRO, L., DE GRACIA, A., NIALL, D., CASTELL, A., BROWNE, M., MCCORMACK, S. J., GRIFFITHS, P. & CABEZA, L. F. 2016. Thermal energy storage in building integrated thermal systems: A review. Part 2. Integration as passive system. Renewable Energy, 85, 1334-1356.
DOI: 10.1016/j.renene.2015.06.064
Google Scholar
[15]
RODE, C., PEUHKURI, R. H., HANSEN, K. K., TIME, B., SVENNBERG, K., ARFVIDSSON, J. & OJANEN, T. 2005. NORDTEST Project on Moisture Buffer Value of Materials. In AIVC 26th conference: Ventilation in relation to the energy performance of buildings, 47-52.
DOI: 10.1520/stp45403s
Google Scholar
[16]
TLEOUBAEV, A. & BRZEZINSKI, A. 2007. Thermal Diffusivity and Volumetric Specific Heat Measurements Using Heat Flow Meter Instruments. presented at the Thermal Conductivity 29/Thermal Expansion 17 Conference, Birmingham, Alabama.
Google Scholar
[17]
ÜRGE-VORSATZ, D., CABEZA, L. F., SERRANO, S., BARRENECHE, C. & PETRICHENKO, K. 2015. Heating and cooling energy trends and drivers in buildings. Renewable and Sustainable Energy Reviews, 41, 85-98.
DOI: 10.1016/j.rser.2014.08.039
Google Scholar
[18]
WALKER, R. & PAVÍA, S. 2014. Moisture transfer and thermal properties of hemp–lime concretes. Construction and Building Materials, 64, 270-276.
DOI: 10.1016/j.conbuildmat.2014.04.081
Google Scholar
[19]
WILLIAMS, J., LAWRENCE, M. & WALKER, P. 2017. The influence of the casting process on the internal structure and physical properties of hemp-lime. Mater Struct, 50, 108.
DOI: 10.1617/s11527-016-0976-4
Google Scholar
[20]
YATES, T. 2002. Final Report on the Construction of the Hemp House at Haverhill, Suffolk. Building Research Establishment, Watford, England.
Google Scholar
[21]
ZHOU, D., ZHAO, C. Y. & TIAN, Y. 2012. Review on thermal energy storage with phase change materials (PCMs) in building applications. Applied Energy, 92, 593-605.
DOI: 10.1016/j.apenergy.2011.08.025
Google Scholar